955 resultados para laser science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To evaluate the effects of a YAG laser posterior capsulotomy on intraocular pressure (IOP) in glaucoma patients. Methods. We retrospectively studied 69 patients who underwent posterior capsulotomy following cataract or combined cataract-glaucoma surgery and who had a minimum follow-up of six months. We assessed IOP control, number of glaucoma medications required, and need for additional glaucoma surgery following capsulotomy as clinical outcomes. We defined an "unfavorable result" as: a =5 mm Hg sustained rise in IOP, a need for additional glaucoma medications, and/or a need for additional glaucoma surgery. We calculated Kaplan-Meier event rate curves for these "unfavorable results." Mean follow-up was 24.4 ± 12.3 months. Results. 6.3% of patients had an IOP rise of =5 mm Hg one hour post capsulotomy. The actuarial (Kaplan-Meier) rate of any "unfavorable result" was 11.6% at 4 months, 38.1% at 12 months, 46.1% at 24 months, and 52.1% at 36 months following capsulotomy. Conclusions. Progression of glaucoma after YAG capsulotomy is common and may be accelerated by the laser procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12 h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NiTi wires and their weldments are commonly used in micro-electro-mechanical systems (MEMS), and in such applications, cyclic loading are commonly encountered. In this paper, the bending-rotation fatigue (BRF) test was used to study the bending fatigue behavior of NiTi wire laser weldment in the small-strain regime. The fracture mechanism, which includes crack initiation, crack growth and propagation of the weldment in the BRF test, was investigated with the aid of SEM fractography and discussed in terms of the microstructure. It was found that crack initiation was primarily surface-condition dependent. The cracks were found to initiate at the surface defects at the weld zone (WZ) surface, and the crack propagation was assisted by the gas inclusions in the WZ. The weldment was finally fractured in a ductile manner. The fatigue life was found to decrease with increasing surface strain and also with increasing bending frequency (controlled by the rotational speed in the BRF test). In comparison, the fatigue life of the unwelded NiTi wires was higher than their welded counterparts at all strain levels and bending frequencies. The decrease in fatigue resistance of the weldment could be attributed to the surface and microstructural defects introduced during laser welding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of the shape memory alloy NiTi in micro-electro-mechanical-systems (MEMSs) is extensive nowadays. In MEMS, complex while precise motion control is always vital. This makes the degradation of the functional properties of NiTi during cycling loading such as the appearance of residual strain become a serious problem to study, in particular for laser micro-welded NiTi in real applications. Although many experimental efforts have been put to study the mechanical properties of laser welded NiTi, surprisingly, up to the best of our understanding, there has not been attempts to quantitatively model the laser-welded NiTi under mechanical cycling in spite of the accurate prediction required in applications and the large number of constitutive models to quantify the thermo-mechanical behavior of shape memory alloys. As the first attempt to fill the gap, we employ a recent constitutive model, which describes the localized SIMT in NiTi under cyclic deformation; with suitable modifications to model the mechanical behavior of the laser welded NiTi under cyclic tension. The simulation of the model on a range of tensile cyclic deformation is consistent with the results of a series of experiments. From this, we conclude that the plastic deformation localized in the welded regions (WZ and HAZs) of the NiTi weldment can explain most of the extra amount of residual strain appearing in welded NiTi compared to the bare one. Meanwhile, contrary to common belief, we find that the ability of the weldment to memorize its transformation history, sometimes known as ‘return point memory’, still remains unchanged basically though the effective working limit of this ability reduces to within 6% deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study the tensile and super-elastic behaviours of laser-welded NiTi wires in Hanks’ solution at open-circuit potential (OCP) were investigated using tensile and cyclic slow-strain-rate tests (SSRT). In comparison with NiTi weldment tested in oil (non-corrosive environment), the weldment in Hanks’ solution suffered from obvious degradation in the tensile properties as evidenced by lower tensile strength, reduced maximum elongation, and a brittle fracture mode. Moreover, a larger residual strain was observed in the weldment after stress–strain cycles in Hanks’ solution. In addition to the microstructural defects resulting from the welding process, the inferior tensile and super-elastic behaviours of the NiTi weldment in Hanks’ solution could be attributed to the trapping of a large amount of hydrogen in the weld zone and heat-affected zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the susceptibility to stress corrosion cracking (SCC) of laser-welded NiTi wires in Hanks’ solution at 37.5 °C was studied by the slow strain-rate test (SSRT) at open-circuit potential and at different applied anodic potentials. The weldment shows high susceptibility to SCC when the applied potential is near to the pitting potential of the heat-affected zone (HAZ). The pits formed in the HAZ become sites of crack initiation when stress is applied, and cracks propagate in an intergranular mode under the combined effect of corrosion and stress. In contrast, the base-metal is immune to SCC under similar conditions. The increase in susceptibility to SCC in the weldment could be attributed to the poor corrosion resistance in the coarse-grained HAZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-weld heat-treatment (PWHT) was applied to NiTi weldments to improve the corrosion behaviour by modifying the microstructure and surface composition. The surface oxide film on the weldments is principally TiO2, together with some Ti, TiO, and Ti2O3. The surface Ti/Ni ratio of the weldments after PWHT is increased. The oxide film formed in Hanks’ solution is thicker on the weldments after PWHT. The pitting resistance of the weldments is increased by PWHT. The galvanic effect in the weldments is very small. The weldment with PWHT at 350 °C shows the best corrosion resistance among other heat-treated weldments in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article discusses the effects of laser welding parameters such as power, welding speed, and focus position on the weld bead profile, microstructure, pseudo-elasticity (PE), and shape memory effect (SME) of NiTi foil with thickness of 250 um using 100W CW fiber laser. The parameter settings to produce the NiTi welds for analysis in this article were chosen from a fractional factorial design to ensure the welds produced were free of any apparent defect. The welds obtained were mainly of cellular dendrites with grain sizes ranging from 2.5 to 4.8 um at the weld centerline. A small amount of Ni3Ti was found in the welds. The onset of transformation temperatures (As and Ms) of the NiTi welds shifted to the negative side as compared to the as-received NiTi alloy. Ultimate tensile stress of the NiTi welds was comparable to the as received NiTi alloy, but a little reduction in the pseudo-elastic property was noted. Full penetration welds with desirable weld bead profiles and mechanical properties were successfully obtained in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the environmentally induced cracking behaviour of the NiTi weldment with and without post-weld heat-treatment (PWHT) in Hanks’ solution at 37.5 °C at OCP were studied by tensile and cyclic slow-strain-rate tests (SSRT), and compared with those tested in oil (an inert environment). Our previous results in the tensile and cyclic SSRT showed that the weldment without PWHT showed high susceptibility to the hydrogen cracking, as evidenced by the degradation of tensile and super-elastic properties when testing in Hanks' solution. The weldment after PWHT was much less susceptible to hydrogen attack in Hanks' solution as no obvious degradation in the tensile and super-elastic properties was observed, and only a very small amount of micro-cracks were found in the fracture surface. The susceptibility to hydrogen cracking of the NiTi weldment could be alleviated by applying PWHT at the optimized temperature of 350 °C after laser welding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by haemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface modification of thin aluminium films is both produced and characterised by exciting surface plasmon polaritons in an attenuated total reflection geometry: silica prism/aluminium/aluminium oxide system. The modification is performed, under ambient conditions, by exposure to a low fluence (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm-1 (A1g), 197 cm-1 (Eg), 398 cm-1 (B1g), 515 cm-1 (A1g), and 640 cm-1 (Eg) assigned to anatase which were replaced by bands at 143 cm-1 (B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process