891 resultados para large spatial scale
Resumo:
We measured the abundance of Cladium jamaicense (Crantz) seeds and three biomarkers in freshwater marsh soils in Shark River Slough (SRS), Everglades National Park (ENP) to determine the degree to which these paleoecological proxies reflect spatial and temporal variation in vegetation. We found that C. jamaicense seeds and the biomarkers Paq, total lignin phenols (TLP) and kaurenes analyzed from surface soils were all significantly correlated with extant aboveground C. jamaicense biomass quantified along a vegetation gradient from a C. jamaicense to a wet prairie/slough (WPS) community. Our results also suggest that these individual proxies may reflect vegetation over different spatial scales: Paq and kaurenes correlated most strongly (R 2 = 0.88 and 0.99, respectively) with vegetation within 1 m of a soil sample, while seeds and TLP reflected vegetation 0–20 m upstream of soil samples. These differences in the spatial scale depicted by the different proxies may be complementary in understanding aspects of historic landscape patterning. Soil profiles of short (25 cm) cores showed that downcore variation in C. jamaicense seeds was highly correlated with two of the three biomarkers (Paq, R 2 = 0.84, p<0.005; TLP, R 2 = 0.97, p<0.0001), and all four of the proxies indicated a recent increase in C. jamaicense biomass at the site. Using a preliminary depth-to-age relationship based on matching charcoal peaks with available ENP fire records (1980-present) specific to our coring site, we found that peak-depths in C. jamaicense seed concentration appeared to correspond to recent minimum water levels (e.g., 1989 and 2001), and low seed abundance corresponded to high water levels (e.g., 1995), consistent with the known autecology of C. jamaicense. In summary, the combination of C. jamaicense seeds and biomarkers may be useful for paleoecological reconstruction of vegetation change and ultimately in guaging the success of ongoing efforts to restore historic hydrologic conditions in the South Florida Everglades.
Does landscape context affect habitat value? The importance of seascape ecology in back-reef systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
This paper presents the summary of the key objectives, instrumentation and logistic details, goals, and initial scientific findings of the European Marie Curie Action SAPUSS project carried out in the western Mediterranean Basin (WMB) during September-October in autumn 2010. The key SAPUSS objective is to deduce aerosol source characteristics and to understand the atmospheric processes responsible for their generations and transformations - both horizontally and vertically in the Mediterranean urban environment. In order to achieve so, the unique approach of SAPUSS is the concurrent measurements of aerosols with multiple techniques occurring simultaneously in six monitoring sites around the city of Barcelona (NE Spain): a main road traffic site, two urban background sites, a regional background site and two urban tower sites (150 m and 545 m above sea level, 150 m and 80 m above ground, respectively). SAPUSS allows us to advance our knowledge sensibly of the atmospheric chemistry and physics of the urban Mediterranean environment. This is well achieved only because of both the three dimensional spatial scale and the high sampling time resolution used. During SAPUSS different meteorological regimes were encountered, including warm Saharan, cold Atlantic, wet European and stagnant regional ones. The different meteorology of such regimes is herein described. Additionally, we report the trends of the parameters regulated by air quality purposes (both gaseous and aerosol mass concentrations); and we also compare the six monitoring sites. High levels of traffic-related gaseous pollutants were measured at the urban ground level monitoring sites, whereas layers of tropospheric ozone were recorded at tower levels. Particularly, tower level night-time average ozone concentrations (80 +/- 25 mu g m(-3)) were up to double compared to ground level ones. The examination of the vertical profiles clearly shows the predominant influence of NOx on ozone concentrations, and a source of ozone aloft. Analysis of the particulate matter (PM) mass concentrations shows an enhancement of coarse particles (PM2.5-10) at the urban ground level (+64 %, average 11.7 mu g m(-3)) but of fine ones (PM1) at urban tower level (+28 %, average 14.4 mu g m(-3)). These results show complex dynamics of the size-resolved PM mass at both horizontal and vertical levels of the study area. Preliminary modelling findings reveal an underestimation of the fine accumulation aerosols. In summary, this paper lays the foundation of SAPUSS, an integrated study of relevance to many other similar urban Mediterranean coastal environment sites.
Resumo:
Soil erosion by water is a major driven force causing land degradation. Laboratory experiments, on-site field study, and suspended sediments measurements were major fundamental approaches to study the mechanisms of soil water erosion and to quantify the erosive losses during rain events. The experimental research faces the challenge to extent the result to a wider spatial scale. Soil water erosion modeling provides possible solutions for scaling problems in erosion research, and is of principal importance to better understanding the governing processes of water erosion. However, soil water erosion models were considered to have limited value in practice. Uncertainties in hydrological simulations are among the reasons that hindering the development of water erosion model. Hydrological models gained substantial improvement recently and several water erosion models took advantages of the improvement of hydrological models. It is crucial to know the impact of changes in hydrological processes modeling on soil erosion simulation.
This dissertation work first created an erosion modeling tool (GEOtopSed) that takes advantage of the comprehensive hydrological model (GEOtop). The newly created tool was then tested and evaluated at an experimental watershed. The GEOtopSed model showed its ability to estimate multi-year soil erosion rate with varied hydrological conditions. To investigate the impact of different hydrological representations on soil erosion simulation, a 11-year simulation experiment was conducted for six models with varied configurations. The results were compared at varied temporal and spatial scales to highlight the roles of hydrological feedbacks on erosion. Models with simplified hydrological representations showed agreement with GEOtopSed model on long temporal scale (longer than annual). This result led to an investigation for erosion simulation at different rainfall regimes to check whether models with different hydrological representations have agreement on the soil water erosion responses to the changing climate. Multi-year ensemble simulations with different extreme precipitation scenarios were conducted at seven climate regions. The differences in erosion simulation results showed the influences of hydrological feedbacks which cannot be seen by purely rainfall erosivity method.
Resumo:
The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs.
Resumo:
The South America southern coast exhibits many outcrops with abundant shell beds, from the Pleistocene through the Recent. How much biological information is preserved within these shell beds? Or, what is the actual probability a living community has to leave a fossil record corresponding to these shell deposits? Although ecological and biogeographical aspects might had been pointed, considering these temporal scales, up to the moment there is no taphonomically-oriented studies available. Quantitative comparisons between living (LAs), death (DAs) and fossil assemblages (FAs) are important not only in strictly taphonomic studies, but have grown a leading tool for conservation paleobiology analysis. Comparing LAs, DAs and FAs from estuaries and lagoons in the Rio Grande do Sul Coastal Plain makes possible to quantitatively understand the nature and quantity of biological information preserved in fossil associations in Holocene lagoon facies. As already noted by several authors, spatial scale parts the analysis, but we detected that the FAs refl ects live ones, rather than dead ones, as previously not realized. The results herein obtained illustrates that species present in DA are not as good preserved in recent (Holocene) fossil record as originally thought. Strictly lagoon species are most prone to leave fossil record. The authors consider that the fi delity pattern here observed for estuarine mollusks to be driven by (i) high temporal and spatial variability in the LAs, (ii) spatial mixing in the DA and (iii) differential preservation of shells, due to long residence times in the taphonomically active zone.
Resumo:
Drought is a key factor affecting forest ecosystem processes at different spatio-temporal scales. For accurately modeling tree functioning ? and thus for producing reliable simulations of forest dynamics ? the consideration of the variability in the timing and extent of drought effects on tree growth is essential, particularly in strongly seasonal climates such as in the Mediterranean area. Yet, most dynamic vegetation models (DVMs) do not include this intra-annual variability of drought effects on tree growth. We present a novel approach for linking tree-ring data to drought simulations in DVMs. A modified forward model of tree-ring width (VS-Lite) was used to estimate seasonal- and site-specific growth responses to drought of Scots pine (Pinus sylvestris L.), which were subsequently implemented in the DVM ForClim. Ring-width data from sixteen sites along a moisture gradient from Central Spain to the Swiss Alps, including the dry inner Alpine valleys, were used to calibrate the forward ring-width model, and inventory data from managed Scots pine stands were used to evaluate ForClim performance. The modified VS-Lite accurately estimated the year-to-year variability in ring-width indices and produced realistic intra-annual growth responses to soil drought, showing a stronger relationship between growth and drought in spring than in the other seasons and thus capturing the strategy of Scots pine to cope with drought. The ForClim version including seasonal variability in growth responses to drought showed improved predictions of stand basal area and stem number, indicating the need to consider intra-annual differences in climate-growth relationships in DVMs when simulating forest dynamics. Forward modeling of ring-width growth may be a powerful tool to calibrate growth functions in DVMs that aim to simulate forest properties in across multiple environments at large spatial scales.
Resumo:
We present measurements of pCO2, O2 concentration, biological oxygen saturation (Delta O2/Ar) and N2 saturation (Delta N2) in Southern Ocean surface waters during austral summer, 2010-2011. Phytoplankton biomass varied strongly across distinct hydrographic zones, with high chlorophyll a (Chla) concentrations in regions of frontal mixing and sea-ice melt. pCO2 and Delta O2 /Ar exhibited large spatial gradients (range 90 to 450 µatm and -10 to 60%, respectively) and co-varied strongly with Chla. However, the ratio of biological O2 accumulation to dissolved inorganic carbon (DIC) drawdown was significantly lower than expected from photosynthetic stoichiometry, reflecting the differential time-scales of O2 and CO2 air-sea equilibration. We measured significant oceanic CO2 uptake, with a mean air-sea flux (~ -20 mmol m-2 d-1) that significantly exceeded regional climatological values. N2 was mostly supersaturated in surface waters (mean Delta N2 of +2.5 %), while physical processes resulted in both supersaturation and undersaturation of mixed layer O2 (mean Delta O2phys = 2.1 %). Box model calculations were able to reproduce much of the spatial variability of Delta N2 and Delta O2phys along the cruise track, demonstrating significant effects of air-sea exchange processes (e.g. atmospheric pressure changes and bubble injection) and mixed layer entrainment on surface gas disequilibria. Net community production (NCP) derived from entrainment-corrected surface Delta O2 /Ar data, ranged from ~ -40 to > 300 mmol O2 m-2 d-1 and showed good coherence with independent NCP estimates based on seasonal mixed layer DIC deficits. Elevated NCP was observed in hydrographic frontal zones and regions of sea-ice melt with shallow mixed layer depths, reflecting the importance of mixing in controlling surface water light and nutrient availability.
Resumo:
In this study, we present the winter time surface energy balance at a polygonal tundra site in northern Siberia based on independent measurements of the net radiation, the sensible heat flux and the ground heat flux from two winter seasons. The latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The long-wave radiation is found to be the dominant factor in the surface energy balance. The radiative losses are balanced to about 60 % by the ground heat flux and almost 40 % by the sensible heat fluxes, whereas the contribution of the latent heat flux is small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Large spatial differences in the surface energy balance are observed between tundra soils and a small pond. The ground heat flux released at a freezing pond is by a factor of two higher compared to the freezing soil, whereas large differences in net radiation between the pond and soil are only observed at the end of the winter period. Differences in the surface energy balance between the two winter seasons are found to be related to differences in snow depth and cloud cover which strongly affect the temperature evolution and the freeze-up at the investigated pond.
Resumo:
Faced with a WTO in a state of paralysis, large developed trading nations have shifted their attentions to other fora to pursue their trade policy objectives. In particular, preferential trade agreements (PTAs) are now being used to promote the regulatory disciplines that were previously rejected by developing countries at the multilateral level. These so-called ‘deep’ or ‘21st century’ PTAs address a variety of issues, from technical norms, procurement, investment protection and intellectual property rights to social and environmental protection. Moreover, recently, developed countries have sought to negotiate PTAs which are large in scale, both in terms of economic size and geographical reach, including the so-called ‘mega-regional’ PTAs, such as the EU-US Transatlantic Trade and Investment Partnership, the EU-Japan PTA, the Transpacific Partnership, and the China-backed Regional Comprehensive Economic Partnership. These mega-regional PTAs are distinctive not just in terms of their sheer size and the breadth and depth of issues addressed, but also because some of their proponents readily admit that one of the central aims pursued by such agreements is to design global rules on new trade issues. In other words, these agreements are being conceived as alternatives to multilateral rule making at the WTO level. The proliferation of 21st century trade deals raises important questions concerning the continued relevance of the WTO as a global rule-making venue, and the impact that the regulatory disciplines promoted in such agreements will have on both developing and developed countries. This paper discusses the emerging features of an international trading system that is increasingly populated by large-scale PTAs and discusses some of the points of tension that arise from such practice. Firstly, it examines instances of horizontal tension resulting from the proliferation of PTAs, particularly the extent to which such PTAs represent a threat or multilateral trade governance. Secondly, it looks at an example of vertical tension by examining the manner in which the imposition of regulatory disciplines through trade agreements can undermine the ability of countries, especially developing countries, to pursue legitimate public interest objectives. Finally, the paper considers a number of steps that could be considered to address some of the adverse effects associated with the fragmentation of the international trading system, including the option of embracing variable geometry within the WTO framework and the need to develop mechanisms that provide flexibility for developing countries in the implementation of regulatory disciplines.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A growing interest in mapping the social value of ecosystem services (ES) is not yet methodologically aligned with what is actually being mapped. We critically examine aspects of the social value mapping process that might influence map outcomes and limit their practical use in decision making. We rely on an empirical case of participatory mapping, for a single ES (recreation opportunities), which involves diverse stakeholders such as planners, researchers, and community representatives. Value elicitation relied on an individual open-ended interview and a mapping exercise. Interpretation of the narratives and GIS calculations of proximity, centrality, and dispersion helped in exploring the factors driving participants’ answers. Narratives reveal diverse value types. Whereas planners highlighted utilitarian and aesthetic values, the answers from researchers revealed naturalistic values as well. In turn community representatives acknowledged symbolic values. When remitted to the map, these values were constrained to statements toward a much narrower set of features of the physical (e.g., volcanoes) and built landscape (e.g., roads). The results suggest that mapping, as an instrumental approach toward social valuation, may capture only a subset of relevant assigned values. This outcome is the interplay between participants’ characteristics, including their acquaintance with the territory and their ability with maps, and the mapping procedure itself, including the proxies used to represent the ES and the value typology chosen, the elicitation question, the cartographic features displayed on the base map, and the spatial scale.
Resumo:
Previous studies have shown that extreme weather events are on the rise in response to our changing climate. Such events are projected to become more frequent, more intense, and longer lasting. A consistent exposure metric for measuring these extreme events as well as information regarding how these events lead to ill health are needed to inform meaningful adaptation strategies that are specific to the needs of local communities. Using federal meteorological data corresponding to 17 years (1997-2013) of the National Health Interview Survey, this research: 1) developed a location-specific exposure metric that captures individuals’ “exposure” at a spatial scale that is consistent with publicly available county-level health outcome data; 2) characterized the United States’ population in counties that have experienced higher numbers of extreme heat events and thus identified population groups likely to experience future events; and 3) developed an empirical model describing the association between exposure to extreme heat events and hay fever. This research confirmed that the natural modes of forcing (e.g., El Niño-Southern Oscillation), seasonality, urban-rural classification, and division of country have an impact on the number extreme heat events recorded. Also, many of the areas affected by extreme heat events are shown to have a variety of vulnerable populations including women of childbearing age, people who are poor, and older adults. Lastly, this research showed that adults in the highest quartile of exposure to extreme heat events had a 7% increased odds of hay fever compared to those in the lowest quartile, suggesting that exposure to extreme heat events increases risk of hay fever among US adults.
Resumo:
Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.
Resumo:
We define Landau quasiparticles within the Gutzwiller variational theory and derive their dispersion relation for general multiband Hubbard models in the limit of large spatial dimensions D. Thereby we reproduce our previous calculations which were based on a phenomenological effective single-particle Hamiltonian. For the one-band Hubbard model we calculate the frst-order corrections in 1/D and find that the corrections to the quasiparticle dispersions are small in three dimensions. They may be largely absorbed in a rescaling of the total bandwidth, unless the system is close to half band filling. Therefore, the Gutzwiller theory in the limit of large dimensions provides quasiparticle bands which are suitable for a comparison with real, three-dimensional Fermi liquids.