882 resultados para large scale data gathering
Resumo:
The new requirement placed on students in tertiary settings in Spain to demonstrate a B1 or a B2 proficiency level of English, in accordance with the Common European Framework of Reference for Languages (CEFRL), has led most Spanish universities to develop a program of certification or accreditation of the required level. The first part of this paper aims to provide a rationale for the type of test that has been developed at the Universidad Politécnica de Madrid for the accreditation of a B2 level, a multiple choice version, and to describe how it was constructed and validated. Then, in the second part of the paper, the results from its application to 924 students enrolled in different degree courses at a variety of schools and faculties at the university are analyzed based on a final test version item analysis. To conclude, some theoretical as well as practical conclusions about testing grammar that affect the teaching and learning process are drawn. RESUMEN. Las nuevas exigencias sobre niveles de competencia B1 y B2 en inglés según el Marco Común Europeo de Referencia para las Lenguas (MCERL) que se imponen sobre los estudiantes de grado y posgrado han llevado a la mayoría de las universidades españolas a desarrollar programas de acreditación o de certificación de estos niveles. La primera parte de este trabajo trata sobre las razones que fundamentan la elección de un tipo concreto de examen para la acreditación del nivel B2 de lengua inglesa en la Universidad Politécnica de Madrid. Se trata de un test de opción múltiple y en esta parte del trabajo se describe cómo fue diseñado y validado. En la segunda parte, se analizan los resultados de la aplicación del test a gran escala a un total de 924 estudiantes matriculados en varias escuelas y Facultades de la Universidad. Para terminar, se apuntan una serie de conclusiones teóricas y prácticas sobre la evaluación de la gramática y de qué modo influye en los procesos de enseñanza y aprendizaje.
Resumo:
With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, function of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells has only very recently been proposed (Jerusalem et al., 2013). In this paper, we present the implementation details of Neurite: the finite difference parallel program used in this reference. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite-explicit and implicit-were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between lectrophysiology and mechanics (Jerusalem et al., 2013). This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.
Resumo:
DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.
Resumo:
This is the final report on reproducibility@xsede, a one-day workshop held in conjunction with XSEDE14, the annual conference of the Extreme Science and Engineering Discovery Environment (XSEDE). The workshop's discussion-oriented agenda focused on reproducibility in large-scale computational research. Two important themes capture the spirit of the workshop submissions and discussions: (1) organizational stakeholders, especially supercomputer centers, are in a unique position to promote, enable, and support reproducible research; and (2) individual researchers should conduct each experiment as though someone will replicate that experiment. Participants documented numerous issues, questions, technologies, practices, and potentially promising initiatives emerging from the discussion, but also highlighted four areas of particular interest to XSEDE: (1) documentation and training that promotes reproducible research; (2) system-level tools that provide build- and run-time information at the level of the individual job; (3) the need to model best practices in research collaborations involving XSEDE staff; and (4) continued work on gateways and related technologies. In addition, an intriguing question emerged from the day's interactions: would there be value in establishing an annual award for excellence in reproducible research? Overview
Resumo:
Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5).
Resumo:
During light-driven proton transport bacteriorhodopsin shuttles between two protein conformations. A large-scale structural change similar to that in the photochemical cycle is produced in the D85N mutant upon raising the pH, even without illumination. We report here that (i) the pKa values for the change in crystallographic parameters and for deprotonation of the retinal Schiff base are the same, (ii) the retinal isomeric configuration is nearly unaffected by the protein conformation, and (iii) preventing rotation of the C13—C14 double bond by replacing the retinal with an all-trans locked analogue makes little difference to the Schiff base pKa. We conclude that the direct cause of the conformational shift is destabilization of the structure upon loss of interaction of the positively charged Schiff base with anionic residues that form its counter-ion.
Resumo:
Multiple-complete-digest mapping is a DNA mapping technique based on complete-restriction-digest fingerprints of a set of clones that provides highly redundant coverage of the mapping target. The maps assembled from these fingerprints order both the clones and the restriction fragments. Maps are coordinated across three enzymes in the examples presented. Starting with yeast artificial chromosome contigs from the 7q31.3 and 7p14 regions of the human genome, we have produced cosmid-based maps spanning more than one million base pairs. Each yeast artificial chromosome is first subcloned into cosmids at a redundancy of ×15–30. Complete-digest fragments are electrophoresed on agarose gels, poststained, and imaged on a fluorescent scanner. Aberrant clones that are not representative of the underlying genome are rejected in the map construction process. Almost every restriction fragment is ordered, allowing selection of minimal tiling paths with clone-to-clone overlaps of only a few thousand base pairs. These maps demonstrate the practicality of applying the experimental and software-based steps in multiple-complete-digest mapping to a target of significant size and complexity. We present evidence that the maps are sufficiently accurate to validate both the clones selected for sequencing and the sequence assemblies obtained once these clones have been sequenced by a “shotgun” method.
Resumo:
The function of a protein generally is determined by its three-dimensional (3D) structure. Thus, it would be useful to know the 3D structure of the thousands of protein sequences that are emerging from the many genome projects. To this end, fold assignment, comparative protein structure modeling, and model evaluation were automated completely. As an illustration, the method was applied to the proteins in the Saccharomyces cerevisiae (baker’s yeast) genome. It resulted in all-atom 3D models for substantial segments of 1,071 (17%) of the yeast proteins, only 40 of which have had their 3D structure determined experimentally. Of the 1,071 modeled yeast proteins, 236 were related clearly to a protein of known structure for the first time; 41 of these previously have not been characterized at all.
Resumo:
We have undertaken an extensive screen to identify Saccharomyces cerevisiae genes whose products are involved in cell cycle progression. We report the identification of 113 genes, including 19 hypothetical ORFs, which confer arrest or delay in specific compartments of the cell cycle when overexpressed. The collection of genes identified by this screen overlaps with those identified in loss-of-function cdc screens but also includes genes whose products have not previously been implicated in cell cycle control. Through analysis of strains lacking these hypothetical ORFs, we have identified a variety of new CDC and checkpoint genes.
Resumo:
A statistical modeling approach is proposed for use in searching large microarray data sets for genes that have a transcriptional response to a stimulus. The approach is unrestricted with respect to the timing, magnitude or duration of the response, or the overall abundance of the transcript. The statistical model makes an accommodation for systematic heterogeneity in expression levels. Corresponding data analyses provide gene-specific information, and the approach provides a means for evaluating the statistical significance of such information. To illustrate this strategy we have derived a model to depict the profile expected for a periodically transcribed gene and used it to look for budding yeast transcripts that adhere to this profile. Using objective criteria, this method identifies 81% of the known periodic transcripts and 1,088 genes, which show significant periodicity in at least one of the three data sets analyzed. However, only one-quarter of these genes show significant oscillations in at least two data sets and can be classified as periodic with high confidence. The method provides estimates of the mean activation and deactivation times, induced and basal expression levels, and statistical measures of the precision of these estimates for each periodic transcript.
Resumo:
Modeling the development of structure in the universe on galactic and larger scales is the challenge that drives the field of computational cosmology. Here, photorealism is used as a simple, yet expert, means of assessing the degree to which virtual worlds succeed in replicating our own.
Resumo:
It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch.
Resumo:
Pseudomonas aeruginosa, an opportunistic human pathogen, is a major causative agent of mortality and morbidity in immunocompromised patients and those with cystic fibrosis genetic disease. To identify new virulence genes of P. aeruginosa, a selection system was developed based on the in vivo expression technology (IVET) that was first reported in Salmonella system. An adenine-requiring auxotrophic mutant strain of P. aeruginosa was isolated and found avirulent on neutropenic mice. A DNA fragment that can complement the mutant strain, containing purEK operon that is required for de novo biosynthesis of purine, was sequenced and used in the IVET vector construction. By applying the IVET selection system to a neutropenic mouse infection model, genetic loci that are specifically induced in vivo were identified. Twenty-two such loci were partially sequenced and analyzed. One of them was a well-studied virulence factor, pyochelin receptor (FptA), that is involved in iron acquisition. Fifteen showed significant homology to reported sequences in GenBank, while the remaining six did not. One locus, designated np20, encodes an open reading frame that shares amino acid sequence homology to transcriptional regulators, especially to the ferric uptake regulator (Fur) proteins of other bacteria. An insertional np20 null mutant strain of P. aeruginosa did not show a growth defect on laboratory media; however, its virulence on neutropenic mice was significantly reduced compared with that of a wild-type parent strain, demonstrating the importance of the np20 locus in the bacterial virulence. The successful isolation of genetic loci that affect bacterial virulence demonstrates the utility of the IVET system in identification of new virulence genes of P. aeruginosa.
Resumo:
Representational difference analysis (RDA) was applied to isolate chromosomal markers in the rat. Four series of RDA [restriction enzymes, BamHI and HindIII; subtraction of ACI/N (ACI) amplicon from BUF/Nac (BUF) amplicon and vice versa] yielded 131 polymorphic markers; 125 of these markers were mapped to all chromosomes except for chromosome X. This was done by using a mapping panel of 105 ACI x BUF F2 rats. To complement the relative paucity of chromosomal markers in the rat, genetically directed RDA, which allows isolation of polymorphic markers in the specific chromosomal region, was performed. By changing the F2 driver-DNA allele frequency around the region, four markers were isolated from the D1Ncc1 locus. Twenty-five of 27 RDA markers were informative regarding the dot blot analysis of amplicons, hybridizing only with tester amplicons. Dot blot analysis at a high density per unit of area made it possible to process a large number of samples. Quantitative trait loci can now be mapped in the rat genome by processing a large number of samples with RDA markers and then by isolating markers close to the loci of interest by genetically directed RDA.