932 resultados para l2 -mean-reversion
Resumo:
Native-like use of preterit and imperfect morphology in all contexts by English learners of L2 Spanish is the exception rather than the rule, even for successful learners. Nevertheless, recent research has demonstrated that advanced English learners of L2 Spanish attain a native-like morphosyntactic competence for the preterit/imperfect contrast, as evidenced by their native-like knowledge of associated semantic entailments (Goodin-Mayeda and Rothman 2007, Montrul and Slabakova 2003, Slabakova and Montrul 2003, Rothman and Iverson 2007). In addition to an L2 disassociation of morphology and syntax (e.g., Bruhn de Garavito 2003, Lardiere 1998, 2000, 2005, Prévost and White 1999, 2000, Schwartz 2003), I hypothesize that a system of learned pedagogical rules contributes to target-deviant L2 performance in this domain through the most advanced stages of L2 acquisition via its competition with the generative system. I call this hypothesis the Competing Systems Hypothesis. To test its predictions, I compare and contrast the use of the preterit and imperfect in two production tasks by native, tutored (classroom), and naturalistic learners of L2 Spanish.
Resumo:
The main goal of all approaches to adult second language acquisition (SLA) is to accurately describe and explain the overall acquisition process. To accomplish this, SLA researchers must come to agree on some key issues. In this commentary, I defend the necessity of the competence/performance distinction and how this relates to why an examination of morphological production presents challenges for SLA research. I suggest that such a methodology is meaningful only when it is dovetailed with procedures that test for related syntactic/semantic knowledge.
Resumo:
Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.
Resumo:
In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].
Resumo:
We obtain sharp estimates for multidimensional generalisations of Vinogradov’s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.
Resumo:
It is now established that certain cognitive processes such as categorisation are tightly linked to the concepts encoded in language. Recent studies have shown that bilinguals with languages that differ in their concepts may show a shift in their cognition towards the L2 pattern primarily as a function of their L2 proficiency. This research has so far focused predominantly on L2 users who started learning the L2 in childhood or early puberty. The current study asks whether similar effects can be found in adult L2 learners. English speakers of L2 Japanese were given an object classification task involving real physical objects, and an online classification task involving artificial novel objects. Results showed a shift towards the L2 pattern, indicating that some degree of cognitive plasticity exists even when a second language is acquired later in life. These results have implications for theories of L2 acquisition and bilingualism, and contribute towards our understanding of the nature of the relationship between language and cognition in the L2 user’s mind.
Resumo:
This article addresses the question of how far working memory may affect second language (L2) learners' improvement in spoken language during a period of immersion. Research is presented testing the hypothesis that individual differences in working memory (WM) capacity are associated with individual variation in improvements in oral production of questions in English. Thirty-two Chinese adult speakers of English were tested, before and after a year's postgraduate study in the United Kingdom, to measure grammatical accuracy and fluency using a question elicitation task, and to measure WM using a battery of first language (L1) and L2 WM tests. Story recall in L1 (Mandarin) was significantly associated with individuals' improvement in oral grammatical measures (p < .05). However, there was no significant mean improvement across the cohort in grammatical accuracy, although there was for fluency. The findings suggest that WM may aid certain aspects of individuals' L2 oral proficiency during academic immersion through postgraduate study. They also indicate that academic immersion in itself can lead to improvements in oral proficiency, independent of WM capacity, but there is no general guarantee of significant grammatical change. Further research to clarify the opportunities for input and interaction available in academic immersion settings is called for.
Resumo:
An underestimate of atmospheric blocking occurrence is a well-known limitation of many climate models. This article presents an analysis of Northern Hemisphere winter blocking in an atmospheric model with increased horizontal resolution. European blocking frequency increases with model resolution, and this results from an improvement in the atmospheric patterns of variability as well as a simple improvement in the mean state. There is some evidence that the transient eddy momentum forcing of European blocks is increased at high resolution, which could account for this. However, it is also shown that the increase in resolution of the orography is needed to realise the improvement in blocking, consistent with the increase in height of the Rocky Mountains acting to increase the tilt of the Atlantic jet stream and giving higher mean geopotential heights over northern Europe. Blocking frequencies in the Pacific sector are also increased with atmospheric resolution, but in this case the improvement in orography actually leads to a decrease in blocking
Resumo:
Using the eye movement monitoring technique, the present study examined whether wh-dependency formation is sensitive to island constraints in second language (L2) sentence comprehension, and whether the presence of an intervening relative clause island has any effects on learners’ ability to ultimately resolve long wh-dependencies. Participants included proficient learners of L2 English from typologically different language backgrounds (German, Chinese), as well as a group of native English-speaking controls. Our results indicate that both the learners and the native speakers were sensitive to relative clause islands during processing, irrespective of typological differences between the learners’ L1s, but that the learners had more difficulty than native speakers linking distant wh-fillers to their lexical subcategorizers during processing. We provide a unified processing-based account for our findings.
Resumo:
In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.
Resumo:
Vegetation and building morphology characteristics are investigated at 19 sites on a north-south LiDAR transect across the megacity of London. Local maxima of mean building height and building plan area density at the city centre are evident. Surprisingly, the mean vegetation height (zv3) is also found to be highest in the city centre. From the LiDAR data various morphological parameters are derived as well as shadow patterns. Continuous images of the effects of buildings and of buildings plus vegetationon sky view factor (Ψ) are derived. A general reduction of Ψ is found, indicating the importance of including vegetation when deriving Ψ in urban areas. The contribution of vegetation to the shadowing at ground level is higher during summer than in autumn. Using these 3D data the influence on urban climate and mean radiant temperature (T mrt ) is calculated with SOLWEIG. The results from these simulations highlight that vegetation can be most effective at reducing heat stress within dense urban environments in summer. The daytime average T mrt is found to be lowest in the densest urban environments due to shadowing; foremost from buildings but also from trees. It is clearly shown that this method could be used to quantify the influence of vegetation on T mrt within the urban environment. The results presented in this paper highlight a number of possible climate sensitive planning practices for urban areas at the local scale (i.e. 102- 5 × 103 m).
Resumo:
The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 (p < 0.01, RMSE = 3.1 K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.