834 resultados para ion chip


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dialkylborenium ion stabilized by an N-heterocyclic carbene has been prepared for the first time by reaction of IMes-9-BBN-H with triflic acid. The ion-separated nature of the borenium ion was confirmed by 1H and 19F diffusion ordered NMR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene Chips are finding extensive use in animal and plant science. Generally microarrays are of two kind, cDNA or oligonucleotide. cDNA microarrays were developed at Stanford University, whereas oligonucleotide were developed by Affymetrix. The construction of cDNA or oligonucleotide on a glass slide helps to compare the gene expression level of treated and control samples by labeling mRNA with green (Cy3) and red (Cy5) dyes. The hybridized gene chip emit fluorescence whose intensity and colour can be measured. RNA labeling can be done directly or indirectly. Indirect method involves amino allyle modified dUTP instead of pre-labelled nucleotide. Hybridization of gene chip generally occurs in a minimum volume possible and to ensure the hetroduplex formation, a ten fold more DNA is spotted on slide than in the solutions. A confocal or semi confocal laser technologies coupled with CCD camera are used for image acquisition. For standardization, house keeping genes are used or cDNA are spotted in gene chip that are not present in treated or control samples. Moreover, statistical analysis (image analysis) and cluster analysis softwares have been developed by Stanford University. The gene-chip technology has many applications like expression analysis, gene expression signatures (molecular phenotypes) and promoter regulatory element co-expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dialysis was performed to examine some of the properties of the soluble phase of calcium (Ca) fortified soymilk at high temperatures. Dialysates were obtained while heating soymilk at temperatures of 80 and 100 °C for 1 h and 121 °C for 15 min. It was found that the pH, total Ca, and ionic Ca of dialysates obtained at high temperature were all lower than in their corresponding nonheated Ca-fortified soymilk. Increasing temperature from 80 to 100 °C hardly affected Ca ion concentration ([Ca2+]) of dialysate obtained from Ca chloride-fortified soymilk, but it increased [Ca2+] in dialysates of Ca gluconate-fortified soymilk and Ca lactate-fortified soymilk fortified with 5 to 6 mM Ca. Dialysates obtained at 100 °C had lower pH than dialysate prepared at 80 °C. Higher Ca additions to soymilk caused a significant (P≤ 0.05) reduction in pH and an increase in [Ca2+] of these dialysates. When soymilk was dialyzed at 121 °C, pH, total Ca, and ionic Ca were further reduced. Freezing point depression (FPD) of dialysates increased as temperature increased but were lower than corresponding soymilk samples. This approach provides a means of estimating pH and ionic Ca in soymilks at high temperatures, in order to better understand their combined role on soymilk coagulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. We hypothesized that PAR2-mediated mechanical hyperalgesia requires sensitization of the ion channel transient receptor potential vanilloid 4 (TRPV4). Immunoreactive TRPV4 was coexpressed by rat dorsal root ganglia (DRG) neurons with PAR2, substance P (SP) and calcitonin gene-related peptide (CGRP), mediators of pain transmission. In PAR2-expressing cell lines that either naturally expressed TRPV4 (bronchial epithelial cells) or that were transfected to express TRPV4 (HEK cells), pretreatment with a PAR2 agonist enhanced Ca2+ and current responses to the TRPV4 agonists phorbol ester 4alpha-phorbol 12,13-didecanoate (4alphaPDD) and hypotonic solutions. PAR2-agonist similarly sensitized TRPV4 Ca2+ signals and currents in DRG neurons. Antagonists of phospholipase Cbeta and protein kinases A, C and D inhibited PAR2-induced sensitization of TRPV4 Ca2+ signals and currents. 4alphaPDD and hypotonic solutions stimulated SP and CGRP release from dorsal horn of rat spinal cord, and pretreatment with PAR2 agonist sensitized TRPV4-dependent peptide release. Intraplantar injection of PAR2 agonist caused mechanical hyperalgesia in mice and sensitized pain responses to the TRPV4 agonists 4alphaPDD and hypotonic solutions. Deletion of TRPV4 prevented PAR2 agonist-induced mechanical hyperalgesia and sensitization. This novel mechanism, by which PAR2 activates a second messenger to sensitize TRPV4-dependent release of nociceptive peptides and induce mechanical hyperalgesia, may underlie inflammatory hyperalgesia in diseases where proteases are activated and released.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new trinuclear hetero-metallic nickel(II)-cadmium(II) complexes [(NiL)(2)Cd(NCS)(2)] (1A and 1B), [(NiL)(2)Cd(NCO)(2)] (2) and [(NiL)(2)Cd(N-3)(2)] (3) have been synthesized using [NiL] as a so-called "ligand complex" (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Crystal structure analyses reveal that all four complexes contain a trinuclear moiety in which two square planar [NiL] units are bonded to a central cadmium(II) ion through double phenoxido bridges. The Cd(II) is in a six-coordinate distorted octahedral environment being bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1A and 1B), cyanate (in 2) and azide (in 3). Complexes 1A and 1B have the same molecular formula but crystallize in very different monoclinic unit cells and can be considered as polymorphs. On the other hand, the two isoelectronic complexes 2 and 3 are indeed isomorphous and crystallize only in one form. Their conformation is similar to that observed in 1A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing current awareness and understanding of the roles and mechanisms of action of ion channel regulation by H(2)S will open opportunities for therapeutic intervention with clear clinical benefits, and inform future therapies. In addition, more sensitive methods for detecting relevant physiological concentrations of H(2)S will allow for clarification of specific ion channel regulation with reference to physiological or pathophysiological settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the patch clamp technique by the Nobel Prize winners Bert Sakmann and Erwin Neher led to huge advances in ion channel research. Their work laid the foundations and revolutionized electrophysiological studies of cells and ion channels. These ion channels underlie many basic cellular physiological processes and, therefore, are key therapeutic targets for pharmaceutical companies. However, current pharmacological strategies are hampered by the lack of specific ion channel blockers. Intense research and development programs are now actively employing antibodies to target ion channels in various formats. This review discusses the use of ion channel antibodies and their associated small molecules as pharmacological tools, termed immunopharmacology. In addition, we will review some recent studies looking into clinical applications of immunopharmacology and intrabodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wealth of recent studies has highlighted the diverse and important influences of carbon monoxide (CO) on cellular signaling pathways. Such studies have implicated CO, and the enzymes from which it is derived (heme oxygenases) as potential therapeutic targets, particularly (although not exclusively) in inflammation, immunity and cardiovascular disease.1 In a recent study,2 we demonstrated that CO inhibited cardiac L-type Ca(2+) channels. This effect arose due to the ability of CO to bind to mitochondria (presumably at complex IV of the electron transport chain) and so cause electron leak, which resulted in increased production of reactive oxygen species. These modulated the channel's activity through interactions with three cysteine residues in the cytosolic C-terminus of the channel's major, pore-forming subunit. Our study provided a potential mechanism for the cardioprotective effects of CO and also highlighted ion channels as a major potential target group for this gasotransmitter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method. Here, we show the wider potential of the multiwell approach with the ability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by preprogrammed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 h depending on the experimental design and yields 16-33 cell recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of antibodies to living cells has the potential to modulate the function of specific proteins by virtue of their high specificity. This specificity has proven effective in determining the involvement of many proteins in neuronal function where specific agonists and antagonists do not exist, e.g. ion channel subunits. We discuss a way to utilise subunit specific antibodies to target individual channel subunits in electrophysiological experiments to determine functional roles within native neurones. Utilising this approach, we have investigated the role of the voltage-gated potassium channel Kv3.1b subunit within a region of the brainstem important in the regulation of autonomic function. We provide some useful control experiments in order to help validate this method. We conclude that antibodies can be extremely valuable in determining the functions of specific proteins in living neurones in neuroscience research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New bifunctional pyrazole based ligands of the type [C3HR2N2CONR'] (where R = H or CH3; R' = CH3, C2H5, or (C3H7)-C-i) were prepared and characterized. The coordination chemistry of these ligands with uranyl nitrate and uranyl bis(dibenzoyl methanate) was studied with infrared (IR), H-1 NMR, electrospray-mass spectrometry (ES-MS), elemental analysis, and single crystal X-ray diffraction methods. The structure of compound [UO2(NO3)(2)(C3H3N2CON{C2H5}(2))] (2) shows that the uranium(VI) ion is surrounded by one nitrogen atom and seven oxygen atoms in a hexagonal bipyramidal geometry with the ligand acting as a bidentate chelating ligand and bonds through both the carbamoyl oxygen and pyrazolyl nitrogen atoms. In the structure of [UO2(NO3)(2)(H2O)(2)(C5H7N2CON {C2H5}(2))(2)], (5) the pyrazole figand acts as a second sphere ligand and hydrogen bonds to the water molecules through carbamoyl oxygen and pyrazolyl nitrogen atoms. The structure of [UO2(DBM)(2)C3H3N2CON{C2H5}(2)] (8) (where DBM = C6H5COCHCOC6H5) shows that the pyrazole ligand acts as a monodentate ligand and bonds through the carbamoyl oxygen to the uranyl group. The ES-MS spectra of 2 and 8 show that the ligand is similarly bonded to the metal ion in solution. Ab initio quantum chemical studies show that the steric effect plays the key role in complexation behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.