997 resultados para internal tapered connection
Resumo:
This study investigated the neuromuscular mechanisms underlying the initial stage of adaptation to novel dynamics. A destabilizing velocity-dependent force field (VF) was introduced for sets of three consecutive trials. Between sets a random number of 4-8 null field trials were interposed, where the VF was inactivated. This prevented subjects from learning the novel dynamics, making it possible to repeatedly recreate the initial adaptive response. We were able to investigate detailed changes in neural control between the first, second and third VF trials. We identified two feedforward control mechanisms, which were initiated on the second VF trial and resulted in a 50% reduction in the hand path error. Responses to disturbances encountered on the first VF trial were feedback in nature, i.e. reflexes and voluntary correction of errors. However, on the second VF trial, muscle activation patterns were modified in anticipation of the effects of the force field. Feedforward cocontraction of all muscles was used to increase the viscoelastic impedance of the arm. While stiffening the arm, subjects also exerted a lateral force to counteract the perturbing effect of the force field. These anticipatory actions indicate that the central nervous system responds rapidly to counteract hitherto unfamiliar disturbances by a combination of increased viscoelastic impedance and formation of a crude internal dynamics model.
Resumo:
The results of recent studies suggest that humans can form internal models that they use in a feedforward manner to compensate for both stable and unstable dynamics. To examine how internal models are formed, we performed adaptation experiments in novel dynamics, and measured the endpoint force, trajectory and EMG during learning. Analysis of reflex feedback and change of feedforward commands between consecutive trials suggested a unified model of motor learning, which can coherently unify the learning processes observed in stable and unstable dynamics and reproduce available data on motor learning. To our knowledge, this algorithm, based on the concurrent minimization of (reflex) feedback and muscle activation, is also the first nonlinear adaptive controller able to stabilize unstable dynamics.
Resumo:
This report gives information on the anatomy of the internal genital organs of male and female Penaeus monodon.
Resumo:
Most of the literature on the role of universities in innovation assumes that academics¡¯ knowledge interacts only with industry and knowledge transfer occurs only or mainly in the technological and scientific fields. We question these assumptions, suggesting academics¡¯ internal and external knowledge interact across disciplines. Using national survey data, this paper tries to show the heterogeneity of university teachers¡¯ knowledge interactions across wider disciplines. Also, this paper explores the patterns of university academics¡¯ internal knowledge interactions with other academics within academia and the university academics¡¯ external knowledge interactions with industry, such as small and medium enterprises (SMEs) and major Korean firms, Chaebols. We found that there are heterogeneities of academics¡¯ knowledge interactions across the disciplines.
Resumo:
A parametric study of spark ignition in a uniform monodisperse turbulent spray is performed with complex chemistry three-dimensional Direct Numerical Simulations in order to improve the understanding of the structure of the ignition kernel. The heat produced by the kernel increases with the amount of fuel evaporated inside the spark volume. Moreover, the heat sink by evaporation is initially higher than the heat release and can have a negative effect on ignition. With the sprays investigated, heat release occurs over a large range of mixture fractions, being high within the nominal flammability limits and finite but low below the lean flammability limit. The burning of very lean regions is attributed to the diffusion of heat and species from regions of high heat release, and from the spark, to lean regions. Two modes of spray ignition are reported. With a relatively dilute spray, nominally flammable material exists only near the droplets. Reaction zones are created locally near the droplets and have a non-premixed character. They spread from droplet to droplet through a very lean interdroplet spacing. With a dense spray, the hot spark region is rich due to substantial evaporation but the cold region remains lean. In between, a large surface of flammable material is generated by evaporation. Ignition occurs there and a large reaction zone propagates from the rich burned region to the cold lean region. This flame is wrinkled due to the stratified mixture fraction field and evaporative cooling. In the dilute spray, the reaction front curvature pdf contains high values associated with single droplet combustion, while in the dense spray, the curvature is lower and closer to the curvature associated with gaseous fuel ignition kernels. © 2011 The Combustion Institute.
Resumo:
In this paper an Active Voltage Control (AVC) technique is presented, for series connection of insulated-gate-bipolar-transistors (IGBT) and control of diode recovery. The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. For the static voltage balancing, the AVC technique can clamp the highest collector-to-emitter voltage to a pre-set clamping voltage level. By selecting the value of the clamping voltage, the difference among series connected IGBTs can be controlled in an accepted range. Another key advantage for AVC is that by changing the reference signal at turn-on, the diode recovery can be optimized. © 2011 EPE Association - European Power Electr.