846 resultados para information theory and computation
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
Many small businesses lease commercial premises. The terms of a lease can affect the ability of the business to grow and adapt and have an impact on cashflow. Ensuring that they have the information with which to negotiate terms is part of the UK government policy focus on small businesses. Such information is most effectively disseminated through the sources of advice that small businesses use during the leasing process. Therefore these sources of advice need identifying. An interview survey of small business tenants who have recently taken leases provides initial results that suggest small businesses do not seek out advice during the leasing process or see the need to be better informed. The only formal professional input is from solicitors but this is not until after the main commercial terms have been agreed. The landlords’ letting agents play a key, but ambiguous, role in providing information as well as advice. These results suggest that the most effective way of disseminating information by government could be via the letting agents, the very people with whom the tenants are negotiating.
Resumo:
Real estate development appraisal is a quantification of future expectations. The appraisal model relies upon the valuer/developer having an understanding of the future in terms of the future marketability of the completed development and the future cost of development. In some cases the developer has some degree of control over the possible variation in the variables, as with the cost of construction through the choice of specification. However, other variables, such as the sale price of the final product, are totally dependent upon the vagaries of the market at the completion date. To try to address the risk of a different outcome to the one expected (modelled) the developer will often carry out a sensitivity analysis on the development. However, traditional sensitivity analysis has generally only looked at the best and worst scenarios and has focused on the anticipated or expected outcomes. This does not take into account uncertainty and the range of outcomes that can happen. A fuller analysis should include examination of the uncertainties in each of the components of the appraisal and account for the appropriate distributions of the variables. Similarly, as many of the variables in the model are not independent, the variables need to be correlated. This requires a standardised approach and we suggest that the use of a generic forecasting software package, in this case Crystal Ball, allows the analyst to work with an existing development appraisal model set up in Excel (or other spreadsheet) and to work with a predetermined set of probability distributions. Without a full knowledge of risk, developers are unable to determine the anticipated level of return that should be sought to compensate for the risk. This model allows the user a better understanding of the possible outcomes for the development. Ultimately the final decision will be made relative to current expectations and current business constraints, but by assessing the upside and downside risks more appropriately, the decision maker should be better placed to make a more informed and “better”.