947 resultados para immune reconstitution inflammatory syndrome
Resumo:
BACKGROUND: Multiple evanescent white dot syndrome (MEWDS) is a benign acquired isolated chorioretinal disorder. Symptoms include photopsia, visual blur and scotomas. Ocular examination reveals multiple white dots at the level of the deep retina. A parainfectious disorder was suggested but the exact mechanism of MEWDS is still unknown. Postulating that MEWDS might be an antigen driven inflammatory reaction, we analyzed HLA subtypes in patients with MEWDS. PATIENTS AND METHODS: Sixteen patients were diagnosed with MEWDS in Lausanne from 1985 to 1994. Blood was withdrawn in 9/16 patients. HLA-A, -B and -DR were sought. RESULTS: HLA-B51 was detected in 4/9 patients (44.4%). Other HLA subtypes were detected sporadically. CONCLUSIONS: The frequency of HLA-B51 haplotype was found to be 3.7 times more elevated than in a normal control caucasian group. This suggests the possibility that MEWDS might be a genetically determined disorder as it is the case for other ocular diseases like Birdshot chorioretinopathy (HLA-A29), Harada's disease (HLA-DRMT3), acute anterior uveitis (HLA-B27) or Behçet's disease (HLA-B51). We have no explanation for the presence of HLA-B51 in both Behçet's disease and MEWDS. The association of HLA-B51 and MEWDS needs confirmation by further testing.
Resumo:
Neutrophils are key components of the inflammatory response and as such contribute to the killing of microorganisms. In addition, recent evidence suggests their involvement in the development of the immune response. The role of neutrophils during the first weeks post-infection with Leishmania donovani was investigated in this study. When L. donovani-infected mice were selectively depleted of neutrophils with the NIMP-R14 monoclonal antibody, a significant increase in parasite numbers was observed in the spleen and bone marrow and to a lesser extent in the liver. Increased susceptibility was associated with enhanced splenomegally, a delay in the maturation of hepatic granulomas, and a decrease in inducible nitric oxide synthase expression within granulomas. In the spleen, neutrophil depletion was associated with a significant increase in interleukin 4 (IL-4) and IL-10 levels and reduced gamma interferon secretion by CD4(+) and CD8(+) T cells. Increased production of serum IL-4 and IL-10 and higher levels of Leishmania-specific immunoglobulin G1 (IgG1) versus IgG2a revealed the preferential induction of Th2 responses in neutrophil-depleted mice. Altogether, these data suggest a critical role for neutrophils in the early protective response against L. donovani, both as effector cells involved in the killing of the parasites and as significant players influencing the development of a protective Th1 immune response.
Resumo:
Gout is caused by the deposition of monosodium urate crystals (MSU) in tissue and provokes a local inflammatory reaction. It is the most common form of inflammatory arthritis in the elderly. The formation of MSU crystals is facilitated by hyperuricemia. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into uric acid metabolism in the kidneys as well as possible links between hyperuricemia and hypertension. MSU crystals provoke inflammation by activating leukocytes to produce inflammatory cytokines and other inflammatory mediators. The uptake of MSU crystals by monocytes involves interactions with Toll-like receptors (TLR-2 and TLR-4) and CD14, components of the innate immune system. Intracellularly, MSU crystals activate inflammasomes to activate pro-IL-1 (interleukin 1) processing to yield mature IL-1beta. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances provide new therapeutic targets to treat hyperuricemia and gout.
Resumo:
Psoriasis is a common chronic inflammatory skin disease, the study of which might also be of considerable value to the understanding of other inflammatory and autoimmune-type diseases, such as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis and diabetes mellitus. There is clear evidence that T cells and dendritic cells have a central role in psoriasis. Based on recent data from humans and animal models, we propose that a psoriasis lesion can be triggered and sustained by the local network of skin-resident immune cells. This concept focuses attention on local, rather than systemic, components of the immune system for rationalized therapeutic approaches of psoriasis and possibly also other chronic inflammatory diseases.
Resumo:
RÉSUMÉ La sclérose en plaques (SEP) est une maladie démyélinisante du système nerveux central (SNC) qui touche le plus souvent de jeunes femmes. Bien qu'elle ait été décrite pour la première fois il y a plus de 200 ans, son étiologie n'est pas encore complètement comprise. Contrairement à d'autres maladies purement génétiques, l'épidémiologie de la SEP ne peut être que partiellement expliquée par des facteurs génétiques. Ceci suggère que des facteurs environnementaux pourraient être impliqués dans la pathogenèse de la SEP. Parmi ceux-ci, le virus d'Epstein-Barr (EBV) est un excellent candidat, comme cela a été démontré par de larges études séroépidémiologiques ainsi que pax l'évaluation de la réponse cellulaire dans le sang. Bien que le SNC soit en fait la cible des réponses immunitaires anormales dans la SEP, peu d'études ont été accomplies sur les réponses immunitaires spécifiques à EBV dans ce compartiment. Ceci est particulièrement vrai chez des patients vivants chez lesquels des biopsies sont rarement effectuées, ainsi que pour les réponses cellulaires car très peu de cellules immunitaires peuvent être obtenues du SNC. Nous avons donc développé des conditions de cultures et un readout nous permettant d'étudier le nombre réduit de cellules disponibles dans le liquide céphalo-rachidien (LCR), qui représente le seul matériel pouvant être obtenu du SNC de patients SEP vivants. Nous avons trouvé que les réponses cellulaires et humorales spécifiques à EBV étaient augmentées dans le LCR des patients SEP comparé à du sang pairé, ainsi que par rapport à des patients avec d'autres maladies neurologiques inflammatoires et noninflammatoires. Afin de déterminer si les réponses immunitaires augmentées contre EBV étaient spécifiques à ce virus ou si elles reflétaient simplement une hyperactivation immunitaire aspécifique, nous avons comparé les réponses spécifiques à EBV avec celles spécifiques au cytomegalovirus (CNN). En effet, comme EBV, CNN est un herpesvirus neurotropique qui peut établir des infections latentes, mais ce dernier n'est pas considéré comme étant associé à la SEP. De façon intéressante, les réponses immunitaires spécifiques à CNN trouvées dans le LCR étaient plus basses que dans le sang, et ceci dans toutes les catégories de patients. Ces données suggèrent qu'une réactivation d'EBV pourrait avoir lieu dans le SNC des patients SEP à un stade précoce de la maladie et renforcent fortement l'hypothèse qu'EBV pourrait avoir un rôle déclencheur dans cette maladie. Ainsi, il pourrait être intéressant d'explorer si un traitement ou un vaccin efficace contre EBV peut prévenir le développement de la SEP. On ne connaît toujours pas la raison pour laquelle les réponses immunitaires spécifiques à EBV sont augmentées chez les patients SEP. Une hypothèse est que la réponse immunitaire est qualitativement différente chez les patients SEP par rapports aux contrôles. Pour examiner ceci, nous avons évalué le profile cytokinique de lymphocytes T CD4+ et CD8+ stimulés par EBV, mais nous n'avons pas pu mettre en évidence de différence remarquable entre patients SEP et sujets sains. Cette question reste donc ouverte et d'autres études sont justifiées. Il n'existe pas de marqueur fiable de la SEP. Ici, nous avons trouvé que la cytokine IL-26, récemment décrite, était augmentée dans les lymphocytes T CD8+ des patients avec une SEP secondairement progressive comparé à des patients SEP en poussée, des patients avec une SEP primairement progressive, des patients avec d'autres maladies neurologiques inflammatoires, ou des sujets sains. De plus, nous avons identifié des types de cellules dérivées du cerveau (astrocytes, oligodendrocytes et neurones) qui exprimaient le récepteur de l'IL-26. Ceci ouvre la voie à d'autres études afin de mieux comprendre la fonction de l'II.-26 et son interaction avec la. SEP. SUMMARY : Multiple sclerosis (MS) is a demyelinating disease affecting the central nervous system (CNS), mostly in young female adults. Although it was first described 200 years ago, its etiology is still not completely understood. Contrary to other purely genetic diseases, genetics can explain only part of MS epidemiology. Therefore, environmental factors that might be involved in MS pathogenesis were searched for. Among them, Epstein-Barr virus (EBV) is a strong potential candidate, such as shown by large seroepidemiological studies and cellular immune response assessments in the blood. Although the CNS is the actual target of abnormal immune responses in MS, few studies have been performed on EBV-specific immune responses in this compartment. This is particularly true for live patients, from which biopsy material is almost never available, and for cellular immune responses, since very few immune cells are available from the CNS. We therefore developed culture conditions and a readout that were compatible with the study of the reduced number of cells found in the cerebrospinal fluid (CSF), the only readily available material from the CNS of live ' MS patients. We found that EBV-specific cellular and humoral immune responses were increased in the CSF of MS patients as compared with paired blood, as well as compared with the CSF of patients with other inflammatory and non-inflammatory neurological diseases. To determine whether the enhanced immune responses against EBV were specific of this virus or simply reflected an aspecific immune hyperactivation, we compared the EBV- with the cytomegalovirus (CMV)-specific immune responses. Indeed, like EBV, CMV is a neurotrophic herpesvirus that can establish latent infections, but the latter is not considered to be associated with MS. Interestingly, CSF CMV-specific immune responses were lower than blood ones and this, in all patient categories. These findings suggest that EBV reactivation may be taking place in the CNS of patients at the early stages of MS and strengthen the hypothesis that EBV may have a triggering role in this disease. Therefore, it might be interesting to explore whether an efficient anti-EBV drug or vaccine is able to prevent MS development. The reason why EBV-specific immune responses are increased in MS patients is still missing. One hypothesis might be that the immune response against EBV is qualitatively different in MS patients as compared with controls. To examine this, we assessed the cytokine mRNA profile of EBV-stimulated CD4+ and CD8+ T cells, but could not find any remarkable difference between MS patients and healthy controls. Therefore, this question remains open and fiirther studies are warranted. Reliable disease markers are lacking for MS. Here, we found that the recently described cytokine IL-26 was increased in CD8+ T cells of patients with secondary progressive MS as compared with relapsing MS, primary progressive MS, other inflammatory neurological diseases and healthy controls. Moreover, we identified brain cell types (astrocytes, oligodendrocytes and neurons) that expressed the IL-26 receptor, paring the way for further studies to understand IL-26 function and its interaction with MS.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) and specific inhibitors of cyclooxygenase (COX)-2, are therapeutic groups widely used for the treatment of pain, inflammation and fever. There is growing experimental and clinical evidence indicating NSAIDs and COX-2 inhibitors also have anti-cancer activity. Epidemiological studies have shown that regular use of Aspirin and other NSAIDs reduces the risk of developing cancer, in particular of the colon. Molecular pathology studies have revealed that COX-2 is expressed by cancer cells and cells of the tumor stroma during tumor progression and in response to chemotherapy or radiotherapy. Experimental studies have demonstrated that COX-2 over expression promotes tumorigenesis, and that NSAIDs and COX-2 inhibitors suppress tumorigenesis and tumor progression. Clinical trials have shown that NSAIDs and COX-2 inhibitors suppress colon polyp formation and malignant progression in patients with familial adenomatous polyposis (FAP) syndrome. Recent advances in the understanding of the cellular and molecular mechanisms of the anti-cancer effects of NSAIDs and COX-2 inhibitors have demonstrated that these drugs target both tumor cells and the tumor vasculature. The therapeutic benefits of COX-2 inhibitors in the treatment of human cancer in combination with chemotherapy or radiotherapy are currently being tested in clinical trials. In this article we will review recent advances in the understanding of the anti-tumor mechanisms of these drugs and discuss their potential application in clinical oncology.
Resumo:
Toll-like receptor 4 (Tlr4) has a pivotal role in innate immune responses, and the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ, Cebpd) is a Tlr4-induced gene. Here we identify a positive feedback loop in which C/EBPδ activates Tlr4 gene expression in macrophages and tumour cells. In addition, we discovered a negative feedback loop whereby the tumour suppressor FBXW7α (FBW7, Cdc4), whose gene expression is inhibited by C/EBPδ, targets C/EBPδ for degradation when C/EBPδ is phosphorylated by GSK-3β. Consequently, FBXW7α suppresses Tlr4 expression and responses to the ligand lipopolysaccharide. FBXW7α depletion alone is sufficient to augment pro-inflammatory signalling in vivo. Moreover, as inflammatory pathways are known to modulate tumour biology, Cebpd null mammary tumours, which have reduced metastatic potential, show altered expression of inflammation-associated genes. Together, these findings reveal a role for C/EBPδ upstream of Tlr4 signalling and uncover a function for FBXW7α as an attenuator of inflammatory signalling.
Resumo:
Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder.
Resumo:
Background: Medical treatment of inflammatory bowel disease (IBD) is becoming more and more complex, as several classes of immuno-modulating drugs (IMD) are often used simultaneously. Thus, the probability of adverse effects is greatly increased. Most studies reporting on adverse effects focus on single therapy, and studies providing a global survey of side effects for multiple treatments are lacking. Aim: To assess the type and frequency of adverse events in IBD patients treated with single and multiple IMD therapy. Methods: Analysis of data from the Swiss IBD Cohort Study (SIBDCS) that collects data on a large sample of IBD patients from hospitals and private practices across Switzerland. The following IMD categories were analyzed: 5-ASA, azathioprine (Aza), 6-mercaptopurine (6-MP), methotrexate (MTX), anti-TNF (infliximab, adalimumab, certolizumab-pegol), cyclosporine, tacrolimus, and steroids. The following side effects were assessed: hepatitis, pancreatitis, leucopenia, thrombopenia, nephritis, allergic reaction, pneumonitis, infections (including tuberculosis), osteoporosis, abdominal pain/diarrhea (unrelated to IBD activity), cataract, diabetes, exanthema, hirsutism, lupus-like syndrome, myalgias, depression/psychosis, tumor development. Results: A total of 1,961 patients were analyzed (977 [50%] female, mean age 42.1 ± 14.4 years): 1,119 with Crohn's disease (CD), 800 with ulcerative colitis (UC), and 42 with indeterminate colitis (IC). Three-hundred eighteen (16.2%) patients were not treated with any of the above-mentioned medications, while 650 (33.2%), 569 (29%) and 424 (21.6%) patients had one-, two-, and three- or more- IMD therapy, respectively. Of the 1,643 patients treated with IMD, 535 (32.6%) patients reported at least one side effect. We found a significant correlation between the number of drugs used by a patient and the frequency of side effects (17.4% side effects for one drug, 29% for 2 drugs, and 60.6% for three or more drugs, p < 0.001). The frequency of side effects for the different IMD classes were as follows: 5-ASA (n = 980 treated patients) 10.8%, Aza/6-MP (n = 636) 51.9% (pancreatitis in 57 = 9%, hepatitis in 17 = 2.7% of treated patients), MTX (n = 146) 42.5% (hepatitis in 4 = 2.7% of treated patients), anti-TNF (n = 255) 23.1%, cyclosporine (n = 49) 10.2%, tacrolimus (n = 5) 20%, steroids (systemic or topical, n = 1,150) 9.6%. Conclusion: IBD treatment is associated with a significant number of side effects. A direct correlation between the number of IMD used simultaneously and the frequency of side effects was observed. The results of this study indicate that treating physicians should be vigilant for the occurrence of side effects in IBD patients under single and/or multiple drug therapy.
Resumo:
The receptor for hyaluronic acid-mediated motility (RHAMM) is an antigen eliciting both humoral and cellular immune responses in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). We initiated a phase 1 clinical trial vaccinating 10 patients with R3 (ILSLELMKL), a highly immunogenic CD8(+) T-cell epitope peptide derived from RHAMM. In 7 of 10 patients, we detected an increase of CD8(+)/HLA-A2/RHAMM R3 tetramer(+)/CD45RA(+)/CCR7(-)/CD27(-)/CD28(-) effector T cells in accordance with an increase of R3-specific CD8(+) T cells in enzyme linked immunospot (ELISpot) assays. In chromium release assays, a specific lysis of RHAMM-positive leukemic blasts was shown. Three of 6 patients with myeloid disorders (1/3 AML, 2/3 MDS) achieved clinical responses: one patient with AML and one with MDS showed a significant reduction of blasts in the bone marrow after the last vaccination. One patient with MDS no longer needed erythrocyte transfusions after 4 vaccinations. Two of 4 patients with MM showed a reduction of free light chain serum levels. Taken together, RHAMM-R3 peptide vaccination induced both immunologic and clinical responses, and therefore RHAMM constitutes a promising target for further immunotherapeutic approaches. This study is registered at http://ISRCTN.org as ISRCTN32763606 and is registered with EudraCT as 2005-001706-37.
Resumo:
ABSTRACT: Chronic Infantile Neurological Cutaneous Articular (CINCA) syndrome, also called Neonatal Onset Multisystem Inflammatory Disease (NOMID) is a chronic disease with early onset affecting mainly the central nervous system, bones and joints and may lead to permanent damage. We report two preterm infants with severe CINCA syndrome treated by anti-interleukin-1 in the neonatal period, although, so far, no experience with this treatment in infants younger than three months of age has been reported. A review of the literature was performed with focus on treatment and neonatal features of CINCA syndrome. CASE REPORT: Two cases suspected to have CINCA syndrome were put on treatment with anakinra in the early neonatal period due to severe clinical presentation. We observed a rapid and persistent decline of clinical signs and systemic inflammation and good drug tolerance. Diagnosis was confirmed in both cases by mutations in the NLRP3/CIAS1-gene coding for cryopyrin. As particular neonatal clinical signs polyhydramnios and endocardial overgrowth are to be mentioned. CONCLUSION: We strongly suggest that specific treatment targeting interleukin-1 activity should be started early. Being well tolerated, it can be introduced already in neonates presenting clinical signs of severe CINCA syndrome in order to rapidly control inflammation and to prevent life-long disability.
Resumo:
Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.
Resumo:
Caspases are best known for their role in apoptosis. More recently, they have gained prominence as critical mediators of innate immune responses. The so-called 'inflammatory caspases' include human caspase-1, -4, -5 and -12 and murine caspase-1, -11 and -12. Of these, caspase-1 is best characterized and serves as the prototype for our understanding of the processing, activation and function of inflammatory caspases. Like their apoptotic counterparts, inflammatory caspases are produced as inactive zymogens and require activation to become proteolytically active. Caspase-1 is activated within the inflammasome, a large cytosolic protein complex that is induced by a growing number of endogenous, microbial, chemical or environmental stimuli. The importance of caspase-1 in initiating innate immune responses is demonstrated by its role in cleaving pro-IL-1 beta and pro-IL-18 to their biologically active forms. New functions have also been implicated, as these proteases and the mechanisms underlying their activation and regulation emerge as important mediators of human health and disease.
Resumo:
BACKGROUND: Peeling skin disease (PSD), a generalized inflammatory form of peeling skin syndrome, is caused by autosomal recessive nonsense mutations in the corneodesmosin gene (CDSN). OBJECTIVES: To investigate a novel mutation in CDSN. METHODS: A 50-year-old white woman showed widespread peeling with erythema and elevated serum IgE. DNA sequencing, immunohistochemistry, Western blot and real-time polymerase chain reaction analyses of skin biopsies were performed in order to study the genetics and to characterize the molecular profile of the disease. RESULTS: Histology showed hyperkeratosis and acanthosis of the epidermis, and inflammatory infiltrates in the dermis. DNA sequencing revealed a homozygous mutation leading to a premature termination codon in CDSN: p.Gly142*. Protein analyses showed reduced expression of a 16-kDa corneodesmosin mutant in the upper epidermal layers, whereas the full-length protein was absent. CONCLUSIONS: These results are interesting regarding the genotype-phenotype correlations in diseases caused by CDSN mutations. The PSD-causing CDSN mutations identified heretofore result in total corneodesmosin loss, suggesting that PSD is due to full corneodesmosin deficiency. Here, we show for the first time that a mutant corneodesmosin can be stably expressed in some patients with PSD, and that this truncated protein is very probably nonfunctional.
Resumo:
It is well established that dysregulation of the interactions between the immune system and commensal bacteria is one factor that underpins the development and chronicity of a number of inflammatory diseases. Certain phyla of bacteria within the microbiota have been associated with 'health', but the mechanisms by which the presence of these bacteria supports a healthy environment are still being unravelled. Recent evidence indicates that one such mechanism involves the anti-inflammatory properties of fermentation products of fibre, short-chain fatty acids and their signalling through the G-protein coupled receptor GPR43. Recent findings also indicate that, even in health, bacterial communities harbour in the airways, indicating that direct exposure to bacterial products at this site may provide a further explanation for how commensal bacteria can regulate chronic airway inflammation.