968 resultados para hybrid composite
Resumo:
Spectrum sensing of multiple primary user channels is a crucial function in cognitive radio networks. In this paper we propose an optimal, sensing resource allocation algorithm for multi-channel cooperative spectrum sensing. The channel target is implemented as an objective and constraint to ensure a pre-determined number of empty channels are detected for secondary user network operations. Based on primary user traffic parameters, we calculate the minimum number of primary user channels that must be sensed to satisfy the channel target. We implement a hybrid sensing structure by grouping secondary user nodes into clusters and assign each cluster to sense a different primary user channels. We then solve the resource allocation problem to find the optimal sensing configuration and node allocation to minimise sensing duration. Simulation results show that the proposed algorithm requires the shortest sensing duration to achieve the channel target compared to existing studies that require long sensing and cannot guarantee the target.
Resumo:
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.
Resumo:
This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.
Resumo:
This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. The approach is tested on a real distribution feeder. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving DFR problem.
Resumo:
This paper deals with an efficient hybrid evolutionary optimization algorithm in accordance with combining the ant colony optimization (ACO) and the simulated annealing (SA), so called ACO-SA. The distribution feeder reconfiguration (DFR) is known as one of the most important control schemes in the distribution networks, which can be affected by distributed generations (DGs) for the multi-objective DFR. In such a case, DGs is used to minimize the real power loss, the deviation of nodes voltage and the number of switching operations. The approach is carried out on a real distribution feeder, where the simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving the DFR problem.
Resumo:
This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
Exploring thermal transport in graphene-polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene-polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using non-equilibrium molecular dynamics simulations, we investigate the interfacial thermal conductance of graphene-polyethylene (PE) nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene-polymer nanocomposites was studied, taking into account of the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.
Resumo:
Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.
Resumo:
Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Resumo:
This paper presents the blast response, damage mechanism and evaluation of residual load capacity of a concrete–steel composite (CSC) column using dynamic computer simulation techniques. This study is an integral part of a comprehensive research program which investigated the vulnerability of structural framing systems to catastrophic and progressive collapse under blast loading and is intended to provide design information on blast mitigation and safety evaluation of load bearing vulnerable columns that are key elements in a building. The performance of the CSC column is compared with that of a reinforced concrete (RC) column with the same dimensions and steel ratio. Results demonstrate the superior performance of the CSC column, compared to the RC column in terms of residual load carrying capacity, and its potential for use as a key element in structural systems. The procedure and results presented herein can be used in the design and safety evaluation of key elements of multi-storey buildings for mitigating the impact of blast loads.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
Blast mats that can be retrofitted to the floor of military vehicles are considered to reduce the risk of injury from under‐vehicle explosions. Anthropometric test devices (ATDs) are validated for use only in the seated position. The aim of this study was to use a traumatic injury simulator fitted with 3 different blast mats in order to assess the ability of 2 ATD designs to evaluate the protective capacity of the mats in 2 occupant postures under 2 severities. Tests were performed for each combination of mat design, ATD, severity and posture using an antivehicle under‐belly injury simulator. The differences between mitigation systems were larger under the H‐III compared to the MiL‐Lx. There was little difference in how the 2 ATDs and how posture ranked the mitigation systems. Results from this study suggest that conclusions obtained by testing in the seated position can be extrapolated to the standing. However, the different percentage reductions observed in the 2 ATDs suggests different levels of protection. It is therefore unclear which ATD should be used to assess such mitigation systems. A correlation between cadavers and ATDs on the protection offered by blast mats is required in order to elucidate this issue.
Resumo:
A significant reduction in global greenhouse gas (GHG) emissions is a priority, and the preservation of existing building stock presents a significant opportunity to reduce the carbon footprint of our built environment. Within this ‘wicked’ problem context, and moving beyond the ad hoc and incremental performance improvements that have been made to date, collaborative and multidisciplinary efforts are required to find rapid and transformational solutions. Design has emerged as a strategic and redirective practice, and lessons can therefore be learned about transformation and potentially applied in the built environment. The purpose of this paper is to discuss a pragmatic and novel research approach for undertaking such applied design driven research. This paper begins with a discussion of key contributions from design science (rational) and action research (reflective) philosophies in creating an emerging methodological ‘hybrid design approach’. This research approach is then discussed in relation to its application to specific research exploring the processes, methods and lessons from design in heritage building retrofit projects. Drawing on both industry and academic knowledge to ensure relevance and rigour, it is anticipated that the hybrid design approach will be useful for others tackling such complex wicked problems that require context-specific solutions.