926 resultados para holographic optical disk
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
This paper presents a method to reconstruct 3D surfaces of silicon wafers from 2D images of printed circuits taken with a scanning electron microscope. Our reconstruction method combines the physical model of the optical acquisition system with prior knowledge about the shapes of the patterns in the circuit; the result is a shape-from-shading technique with a shape prior. The reconstruction of the surface is formulated as an optimization problem with an objective functional that combines a data-fidelity term on the microscopic image with two prior terms on the surface. The data term models the acquisition system through the irradiance equation characteristic of the microscope; the first prior is a smoothness penalty on the reconstructed surface, and the second prior constrains the shape of the surface to agree with the expected shape of the pattern in the circuit. In order to account for the variability of the manufacturing process, this second prior includes a deformation field that allows a nonlinear elastic deformation between the expected pattern and the reconstructed surface. As a result, the minimization problem has two unknowns, and the reconstruction method provides two outputs: 1) a reconstructed surface and 2) a deformation field. The reconstructed surface is derived from the shading observed in the image and the prior knowledge about the pattern in the circuit, while the deformation field produces a mapping between the expected shape and the reconstructed surface that provides a measure of deviation between the circuit design models and the real manufacturing process.
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flow computation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we de- velop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional mul- tilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrec- tional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimiza- tion search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow com- putation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
We study the gravitational dual of a high-energy collision in a confining gauge theory. We consider a linearized approach in which two point particles traveling in an AdS-soliton background suddenly collide to form an object at rest (presumably a black hole for large enough center-of-mass energies). The resulting radiation exhibits the features expected in a theory with a mass gap: late-time power law tails of the form t −3/2, the failure of Huygens" principle and distortion of the wave pattern as it propagates. The energy spectrum is exponentially suppressed for frequencies smaller than the gauge theory mass gap. Consequently, we observe no memory effect in the gravitational waveforms. At larger frequencies the spectrum has an upward-stairway structure, which corresponds to the excitation of the tower of massive states in the confining gauge theory. We discuss the importance of phenomenological cutoffs to regularize the divergent spectrum, and the aspects of the full non-linear collision that are expected to be captured by our approach.
Resumo:
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.
Resumo:
The kinetics of binding of a glycolipid-anchored protein (the promastigote surface protease, PSP) to planar lecithin bilayers is studied by an integrated optics technique, in which the bilayer membrane is supported on an optical wave guide and the phase velocities of guided light modes in the wave guide are measured. From these velocities, the optical parameters of the membrane and PSP layers deposited on the waveguide are determined, yielding in particular the mass of PSP bound to the membrane, which is followed in real time. From a comparison of the binding rates of PSP and PSP from which the lipid moiety has been removed, it is shown that the lipid moiety plays a key role in anchoring the protein to the membrane. Specific and nonspecific binding of antibodies to membrane-anchored PSP is also investigated. As little as a fifth of a monolayer of PSP is sufficient to suppress the appreciable nonspecific binding of antibodies to the membrane.
Resumo:
We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.
Resumo:
We present the optical properties of Na0.7CoO2 single crystals, measured over a broad spectral range as a function of temperature (T). The capability to cover the energy range from the far-infrared up to the ultraviolet allows us to perform reliable Kramers-Kronig transformation, in order to obtain the absorption spectrum (i.e., the complex optical conductivity). To the complex optical conductivity we apply the generalized Drude model, extracting the frequency dependence of the scattering rate (Gamma) and effective mass (m*) of the itinerant charge carriers. We find that Gamma(omega) at low temperatures and for similar to omega. This suggests that Na0.7CoO2 is at the verge of a spin-density-wave metallic phase.
Resumo:
Purpose: To evaluate the reproducibility of Cirrus-SD OCT measurements and to compare central macular thickness (CMT) measurements between TD-Stratus and SD-Cirrus OCT in patients with active exudative AMD. Methods: Consecutive case series of patients with active exudative AMD seen in the Medical Retina Department. Patients underwent 1 scan with Stratus (macular thickness map protocol) and 5 scans with Cirrus (Macular Cube protocol) at the same visit by the same experienced examiner. To be included, patients best-corrected visual acuity (BCVA) had to be >20/200 while all scans had to be of sufficient quality, well-centered and at least one Cirrus scan with CMT >300 microns. The repeatability of the SD Cirrus was estimated by using all 5 CMT measurements and the mean of the Cirrus measurements was compared with the CMT obtained by TD Stratus. Results: Cirrus OCT demonstrated high intraobserver repeatability at the central foveal region (ICC 96%). The mean of the CMT measurements was 321microns for Stratus and 387 microns for Cirrus. The average difference was 65m (SD=30). The coefficient of concordance between Stratus and Cirrus CMT measurements was rho=0,749 with a high precision and a moderate accuracy. The equation of the line of regression between Stratus and meanCirrus is given by the following: M_stratus = 0,848 x m_cirrus - 4,496 (1).Conclusions: The Cirrus macular cube protocol allows reproducible CMT measurements in patients with active exudative AMD. In cases of upgrading from TD to SD use and vice versa, there is the possibility to predict the measurements by using the equation (1). These real life data and conclusions can help in improving our clinical management of patients with neovascular AMD.
Resumo:
PURPOSE: To report the time course of retinal morphologic changes in a patient with acute retinal pigment epithelitis (ARPE) using spectral domain optical coherence tomography (SD-OCT). METHODS: A 30-year old man was referred for blurred vision of his right eye after five days that appeared suddenly 15 days after recovery from a flu-like syndrome. SD-OCT was performed immediately, followed by fluorescein and infracyanine angiography at eight days and then at three weeks. RESULTS: At presentation, a bubble of sub-macular deposit was observed on the right macula with central golden micronodules in a honeycomb pattern. SD-OCT showed an "anterior dislocation" of all the retinal layers up to the inner/outer segment (IS/OS) line and irregular deposits at the OS level together with thickening of the retinal pigment epithelial (RPE) layer. As visual acuity increased, eight days later, the OCT showed reduction of the sub-retinal deposits and an abnormal hyperflectivity of the sub-retinal and RPE layers was observed. The patient showed a positive serology for picornavirus. DISCUSSION: The acute SD-OCT sections of this patient with ARPE were compared with histological sections of a 35 day old Royal College of Surgeons rat. Similar findings could be observed, with preservation of the IS/OS line and accumulation of debris at the OS level, suggesting that ARPE symptoms could result from a transient phagocytic dysfunction of the RPE at the fovea, inducing reversible accumulation of undigested OS. Picornaviruses comprising enterovirus and coxsachievirus described as being associated with acute chorioretinitis. In this case, it was responsible for ARPE. CONCLUSION: We hypothesize that ARPE syndrome results from a transient dysfunction of RPE, which can occur as a post viral reaction.
Resumo:
In this paper, the sensor of an optical mouse is presented as a counterfeit coin detector applied to the two-Euro case. The detection process is based on the short distance image acquisition capabilities of the optical mouse sensor where partial images of the coin under analysis are compared with some partial reference coin images for matching. Results show that, using only the vision sense, the counterfeit acceptance and rejection rates are very similar to those of a trained user and better than those of an untrained user.
Resumo:
The following paper introduces the work conducted to create a relative virtual mouse based on the interpretation of head movements and face gesture through a low cost camera and the optical flow of the images. This virtual device is designed specifically as an alternative non-contact pointer for people with mobility impairments in the upper extremities and reduced head control. The proposed virtual device was compared with a conventional mouse, a touchpad and a digital joystick. Validation results show performances close to a digital joystick but far away from a conventional mouse.