958 resultados para heat-stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere "fold change" ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein homeostasis is essential for cells to prosper and survive. Various forms of stress, such as elevated temperatures, oxidative stress, heavy metals or bacterial infections cause protein damage, which might lead to improper folding and formation of toxic protein aggregates. Protein aggregation is associated with serious pathological conditions such as Alzheimer’s and Huntington’s disease. The heat shock response is a defense mechanism that protects the cell against protein-damaging stress. Its ancient origin and high conservation among eukaryotes suggest that the response is crucial for survival. The main regulator of the heat shock response is the transcription factor heat shock factor 1 (HSF1), which induces transcription of genes encoding protective molecular chaperones. In vertebrates, a family of four HSFs exists (HSF1-4), with versatile functions not only in coping with acute stress, but also in development, longevity and cancer. Thus, knowledge of the HSFs will aid in our understanding on how cells survive suboptimal circumstances, but will also provide insights into normal physiological processes as well as diseaseassociated conditions. In this study, the function and regulation of HSF2 have been investigated. Earlier gene inactivation experiments in mice have revealed roles for HSF2 in development, particularly in corticogenesis and spermatogenesis. Here, we demonstrate that HSF2 holds a role also in the heat shock response and influences stress-induced expression of heat shock proteins. Intriguingly, DNA-binding activity of HSF2 upon stress was dependent on the presence of intact HSF1, suggesting functional interplay between HSF1 and HSF2. The underlying mechanism for this phenomenon could be configuration of heterotrimers between the two factors, a possibility that was experimentally verified. By changing the levels of HSF2, the expression of HSF1-HSF2 heterotrimer target genes was altered, implementing HSF2 as a modulator of HSF-mediated transcription. The results further indicate that HSF2 activity is dependent on its concentration, which led us to ask the question of how accurate HSF2 levels are achieved. Using mouse spermatogenesis as a model system, HSF2 was found to be under direct control of miR-18, a miRNA belonging to the miR-17~92 cluster/Oncomir-1 and whose physiological function had remained unclear. Investigations on spermatogenesis are severely hampered by the lack of cell systems that would mimic the complex differentiation processes that constitute male germ cell development. Therefore, to verify that HSF2 is regulated by miR-18 in spermatogenesis, a novel method named T-GIST (Transfection of Germ cells in Intact Seminiferous Tubules) was developed. Employing this method, the functional consequences of miR-18-mediated regulation in vivo were demonstrated; inhibition of miR- 18 led to increased expression of HSF2 and altered the expression of HSF2 target genes Ssty2 and Speer4a. Consequently, the results link miR-18 to HSF2-mediated processes such as germ cell maturation and quality control and provide miR-18 with a physiological role in gene expression during spermatogenesis.Taken together, this study presents compelling evidence that HSF2 is a transcriptional regulator in the heat shock response and establishes the concept of physical interplay between HSF2 and HSF1 and functional consequences thereof. This is also the first study describing miRNA-mediated regulation of an HSF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostaglandins are natural fatty acid derivatives with diverse physiological effects, including immune function and the control of cell growth. While the action of prostaglandins in the induction of stress proteins in vertebrate cells is well documented, their functions in invertebrate cells have been poorly investigated. The purpose of the present study was to investigate the effect of prostaglandin A1 (PGA1; 0.25, 1.25 and 12.5 µg/ml) on protein synthesis during the growth of Aedes albopictus cells. We found that PGA1 stimulates the synthesis of several polypeptides with molecular masses of 87, 80, 70, 57, 29, 27 and 23 kDa in Aedes albopictus cells. When the proteins induced by PGA1 and those induced by heat treatment were compared by polyacrylamide gel electrophoresis, PGA1 was found to induce the stress proteins. The HSP70 family and the low-molecular weight polypeptides (29 and 27 kDa, respectively) were induced by PGA1 in the lag phase. We also observed that PGA1 is able to induce a 23-kDa polypeptide independently of the growth phase of the cell

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal environmental stress can anticipate acute fatigue during exercise at a fixed intensity (%VO2max). Controversy exists about whether this anticipation is caused by the absolute internal temperature (Tint, ºC), by the heat storage rate (HSR, cal/min) or by both mechanisms. The aim of the present study was to study acute fatigue (total exercise time, TET) during thermal stress by determining Tint and HSR from abdominal temperature. Thermal environmental stress was controlled in an environmental chamber and determined as wet bulb globe temperature (ºC), with three environmental temperatures being studied: cold (18ºC), thermoneutral (23.1ºC) or hot (29.4ºC). Six untrained male Wistar rats weighing 260-360 g were used. The animals were submitted to exercise at the same time of day in the three environments and at two treadmill velocities (21 and 24 m/min) until exhaustion. After implantation of a temperature sensor and treadmill adaptation, the animals were submitted to a Latin square experimental design using a 2 x 3 factorial scheme (velocity and environment), with the level of significance set at P<0.05. The results showed that the higher the velocity and the ambient temperature, the lower was the TET, with these two factors being independent. This result indicated that fatigue was independently affected by both the increase in exercise intensity and the thermal environmental stress. Fatigue developed at different Tint and HSR showed the best inverse relationship with TET. We conclude that HSR was the main anticipating factor of fatigue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the effects of exercise and anabolic-androgenic steroids on cardiac HSP72 expression. Male Wistar rats were divided into experimental groups: nandrolone exercise (NE, N = 6), control exercise (CE, N = 6), nandrolone sedentary (NS, N = 6), and control sedentary (CS, N = 6). Animals in the NE and NS groups received a weekly intramuscular injection (6.5 mg/kg of body weight) of nandrolone decanoate, while those in the CS and CE groups received mineral oil as vehicle. Animals in the NE and CE groups were submitted to a progressive running program on a treadmill, for 8 weeks. Fragments of the left ventricle were collected at sacrifice and the relative immunoblot contents of HSP72 were determined. Heart weight to body weight ratio was higher in exercised than in sedentary animals (P < 0.05, 4.65 ± 0.38 vs 4.20 ± 0.47 mg/g, respectively), independently of nandrolone, and in nandrolone-treated than untreated animals (P < 0.05, 4.68 ± 0.47 vs 4.18 ± 0.32 mg/g, respectively), independently of exercise. Cardiac HSP72 accumulation was higher in exercised than in sedentary animals (P < 0.05, 677.16 ± 129.14 vs 246.24 ± 46.30 relative unit, respectively), independently of nandrolone, but not different between nandrolone-treated and untreated animals (P > 0.05, 560.88 ± 127.53 vs 362.52 ± 95.97 relative unit, respectively) independently of exercise. Exercise-induced HSP72 expression was not affected by nandrolone. These levels of HSP72 expression in response to nandrolone administration suggest either a low intracellular stress or a possible less protection to the myocardium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several stresses to tissues including hyperthermia, ischemia, mechanical trauma and heavy metals have been demonstrated to affect the regulation of a subset of the family of heat shock proteins of70kOa (hsp70). In several organisms following some of these traumas, the levels of hsp70 mRNA and proteins are dramatically upregulated. However, the effects of the stress on limb and tail amputation in the newt Notophthalmus viridescens, involving mechanical tissue damage, have not adequately been examined. In the present study, three techniques were utilized to quantitate the levels of hsp70 mRNA and protein in the tissues of the forelimbs and tails of newts during the early post-traumatic events following surgical resection of these:: appendages. These included quantitative Western blotting of proteins separated by both one and twodimensional SDS-polyacrylamide gel electrophoresis and quantitative Northern blot analysis of total RNA. In tissues of both the limb and tail one hour after amputation, there were no significant differences in the levels of hsp70 protein measured by one-dimensional SOSPAGE followed by Western blotting, when compared to the levels measured in the unamputated limb. A 30 minute heat shock at 35°C failed to elicit an increase in the levels of hsp70 protein in these tissues. Further analysis using the more sensitive 20 PAGE separation of stump tissue proteins revealed that at least some of the five hsp70 isoforms of the newt may be differentially regulated in limbs and tails in response to trauma. It appears also that amputation of the tail and limb tissues leads to slight 3 elevation in the levels of HSP70 mRNA when compared to those of their respective unstressed tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease that destroys pancreatic beta cells, affecting glucose homeostasis. In T1DM, glucoregulation and carbohydrate oxidation may be altered in different ambient temperatures; however, current literature has yet to explore these mechanisms. This study examines the effects of 30 minutes of exercise at 65% VO2max in 5ºC, 20ºC and 35ºC in individuals with T1DM. No significant differences were observed for blood glucose across the 3 conditions (p = 0.442), but significance was found for core temperature, heat storage, and sweat rate (p < 0.01). Blood glucose was also shown to vary greatly between individuals among conditions. The mechanisms behind the differences in blood glucose may be due to the lack of significant glucagon production among conditions. These findings suggest that T1DM individuals may exercise submaximally for 30 minutes in different ambient temperatures without significant differences in glucoregulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TDP-43 est une protéine multifonctionnelle possédant des rôles dans la transcription, l'épissage des pré-ARNm, la stabilité et le transport des ARNm. TDP-43 interagit avec d'autres hnRNP, incluant hnRNP A2, via son extrémité C-terminale. Plusieurs membres de la famille des hnRNP étant impliqués dans la réponse au stress cellulaire, alors nous avons émis l’hypothèse que TDP-43 pouvait y participer aussi. Nos résultats démontrent que TDP-43 et hnRNP A2 sont localisés au niveau des granules de stress, à la suite d’un stress oxydatif, d’un choc thermique, et lors de l’exposition à la thapsigargine. TDP-43 contribue à la fois à l'assemblage et au maintien des granules de stress en réponse au stress oxydatif. TDP-43 régule aussi de façon différentielle les composants clés des granules de stress, notamment TIA-1 et G3BP. L'agrégation contrôlée de TIA-1 est perturbée en l'absence de TDP-43. En outre, TDP-43 régule le niveau d`ARNm de G3BP, un facteur de granule de stress de nucléation. La mutation associée à la sclérose latérale amyotrophique, TDP-43R361S, compromet la formation de granules de stress. Ainsi, la fonction cellulaire de TDP-43 s'étend au-delà de l’épissage; TDP-43 est aussi un composant de la réponse cellulaire au stress central et un acteur actif dans le stockage des ARNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectif : Cette thèse a pour objectif de mieux comprendre l’effet du stress sur la douleur aiguë et chronique. Devis expérimental : 16 patients souffrant de douleur chronique lombalgique et 18 sujets contrôles ont participé à une étude d’imagerie par résonance magnétique (IRM) et ont collecté des échantillons de salive afin de quantifier les niveaux d’hormone de stress (i.e. cortisol) la journée de l’étude (réponse réactive) et durant les sept jours consécutifs suivants (réponse basale). Étude 1 : Une première étude a examiné le lien entre les niveaux de cortisol basal, le volume de l’hippocampe et l’activité cérébrale évoquée par la douleur thermique chez des patients souffrant de douleur chronique et les sujets contrôles. Les résultats révèlent que les patients souffrant de douleur chronique avaient des niveaux de cortisol plus élevés que ceux des sujets contrôles. Chez ces patients, un niveau élevé de cortisol était associé à un plus petit volume de l'hippocampe et à davantage d’activation dans le gyrus parahippocampique antérieure (une région impliquée dans l'anxiété anticipatoire et l'apprentissage associatif). De plus, une analyse de médiation a montré que le niveau de cortisol basal et la force de la réponse parahippocampique explique statistiquement l’association négative entre le volume de l'hippocampe et l'intensité de la douleur chronique. Ces résultats suggèrent que l’activité endocrinienne plus élevée chez les patients ayant un plus petit hippocampe modifie le fonctionnement du complexe hippocampique et contribue à l’intensité de la douleur chronique. Étude 2 : La deuxième étude a évalué la contribution de la réponse de stress réactif aux différences interindividuelles dans la perception de la douleur aiguë chez des patients souffrant de douleur chronique et chez des sujets normaux. Les deux groupes ont montré des augmentations significatives du niveau de cortisol en réponse à des stimulations nocives administrées dans un contexte d’IRM suggérant ainsi que la réactivité de l’axe hypothalamo-hypophyso-surrénalien est préservée chez les patients lombalgiques. De plus, les individus présentant une réponse hormonale de stress plus forte ont rapporté moins de douleur et ont montré une réduction de l'activation cérébrale dans le noyau accumbens, dans le cortex cingulaire antérieur (CCA), le cortex somatosensoriel primaire, et l'insula postérieure. Des analyses de médiation ont indiqué que la douleur liée à l'activité du CCA explique statistiquement la relation entre la réponse de stress et le désagrément de la douleur rapportée par les participants. Enfin, des analyses complémentaires ont révélé que le stress réduit la connectivité fonctionnelle entre le CCA et le tronc cérébral pendant la douleur aiguë. Ces résultats indiquent que le stress réactif module la douleur et contribue à la variabilité interindividuelle de l'activité cérébrale et la réponse affective à la douleur. Discussion : Conjointement, ces études suggèrent dans un premier temps que la douleur chronique peut être exacerbée par une réponse physiologique inadéquate de l'organisme exposé à un stress récurrent, et en un second temps, que le CCA contribuerait à l'analgésie induite par le stress. Sur le plan conceptuel, ces études renforcent le point de vue prédominant suggérant que la douleur chronique induit des changements dans les systèmes cérébraux régissant les fonctions motivationnelles et affective de la douleur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland Japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypes :511 h exposure to >= 33.7 degrees C at anthesis caused sterility. In IR64, there was no interaction between temperature and duration of exposure, and spikelet fertility was reduced by about 7% per degrees C > 29.6 degrees C. In Azucena there was a significant interaction and spikelet fertility was reduced by 2.4% degrees Cd-1 above a threshold of 33 degrees C. Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distributions of times to first cell division were determined for populations of Escherichia coli stationary-phase cells inoculated onto agar media. This was accomplished by using automated analysis of digital images of individual cells growing on agar and calculation of the "box area ratio." Using approximately 300 cells per experiment, the mean time to first division and standard deviation for cells grown in liquid medium at 37 degrees C and inoculated on agar and incubated at 20 degrees C were determined as 3.0 h and 0.7 h, respectively. Distributions were observed to tail toward the higher values, but no definitive model distribution was identified. Both preinoculation stress by heating cultures at 50 degrees C and postinoculation stress by growth in the presence of higher concentrations of NaCl increased mean times to first division. Both stresses also resulted in an increase in the spread of the distributions that was proportional to the mean division time, the coefficient of variation being constant at approximately 0.2 in all cases. The "relative division time," which is the time to first division for individual cells expressed in terms of the cell size doubling time, was used as measure of the "work to be done" to prepare for cell division. Relative division times were greater for heat-stressed cells than for those growing under osmotic stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic analysis of heat tolerance will help breeders produce rice (Oryza sativa L.) varieties adapted to future climates. An F6 population of 181 recombinant inbred lines of Bala (tolerant) × Azucena (susceptible) was screened for heat tolerance at anthesis by measuring spikelet fertility at 30°C (control) and 38°C (high temperature) in experiments conducted in the Philippines and the United Kingdom. The parents varied significantly for absolute spikelet fertility under control (79–87%) and at high temperature (2.9–47.1%), and for relative spikelet fertility (high temperature/control) at high temperature (3.7–54.9%). There was no correlation between spikelet fertility in control and high-temperature conditions and no common quantitative trait loci (QTLs) were identified. Two QTLs for spikelet fertility under control conditions were identified on chromosomes 2 and 4. Eight QTLs for spikelet fertility under high-temperature conditions were identified on chromosomes 1, 2, 3, 8, 10, and 11. The most significant heat-responsive QTL, contributed by Bala and explaining up to 18% of the phenotypic variation, was identified on chromosome 1 (38.35 mega base pairs on the rice physical genome map). This QTL was also found to influence plant height, explaining 36.6% of the phenotypic variation. A comparison with other studies of abiotic (drought, cold, salinity) stresses showed QTLs at similar positions on chromosomes 1, 3, 8, and 10, suggesting common underlying stress-responsive regions of the genome.