924 resultados para heart failure clinic
Resumo:
AIMS Device-based pacing-induced diaphragmatic stimulation (PIDS) may have therapeutic potential for chronic heart failure (HF) patients. We studied the effects of PIDS on cardiac function and functional outcomes. METHODS AND RESULTS In 24 chronic HF patients with CRT, an additional electrode was attached to the left diaphragm. Randomized into two groups, patients received the following PIDS modes for 3 weeks in a different sequence: (i) PIDS off (control group); (ii) PIDS 0 ms mode (PIDS simultaneously with ventricular CRT pulse); or (iii) PIDS optimized mode (PIDS with optimized delay to ventricular CRT pulse). For PIDS optimization, acoustic cardiography was used. Effects of each PIDS mode on dyspnoea, power during exercise testing, and LVEF were assessed. Dyspnoea improved with the PIDS 0 ms mode (P = 0.057) and the PIDS optimized mode (P = 0.034) as compared with the control group. Maximal power increased from median 100.5 W in the control group to 104.0 W in the PIDS 0 ms mode (P = 0.092) and 109.5 W in the PIDS optimized mode (P = 0.022). Median LVEF was 33.5% in the control group, 33.0% in the PIDS 0 ms mode, and 37.0% in the PIDS optimized mode (P = 0.763 and P = 0.009 as compared with the control group, respectively). PIDS was asymptomatic in all patients. CONCLUSION PIDS improves dyspnoea, working capacity, and LVEF in chronic HF patients over a 3 week period in addition to CRT. This pilot study demonstrates proof of principle of an innovative technology which should be confirmed in a larger sample. TRIAL REGISTRATION NCT00769678.
Resumo:
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is remarkably common in elderly people with highly prevalent comorbid conditions. Despite its increasing in prevalence, there is no evidence-based effective therapy for HFpEF. We sought to evaluate whether inspiratory muscle training (IMT) improves exercise capacity, as well as left ventricular diastolic function, biomarker profile and quality of life (QoL) in patients with advanced HFpEF and nonreduced maximal inspiratory pressure (MIP). DESIGN AND METHODS A total of 26 patients with HFpEF (median (interquartile range) age, peak exercise oxygen uptake (peak VO2) and left ventricular ejection fraction of 73 years (66-76), 10 ml/min/kg (7.6-10.5) and 72% (65-77), respectively) were randomized to receive a 12-week programme of IMT plus standard care vs. standard care alone. The primary endpoint of the study was evaluated by positive changes in cardiopulmonary exercise parameters and distance walked in 6 minutes (6MWT). Secondary endpoints were changes in QoL, echocardiogram parameters of diastolic function, and prognostic biomarkers. RESULTS The IMT group improved significantly their MIP (p < 0.001), peak VO2 (p < 0.001), exercise oxygen uptake at anaerobic threshold (p = 0.001), ventilatory efficiency (p = 0.007), metabolic equivalents (p < 0,001), 6MWT (p < 0.001), and QoL (p = 0.037) as compared to the control group. No changes on diastolic function parameters or biomarkers levels were observed between both groups. CONCLUSIONS In HFpEF patients with low aerobic capacity and non-reduced MIP, IMT was associated with marked improvement in exercise capacity and QoL.
Resumo:
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.
Devices in heart failure: potential methods for device-based monitoring of congestive heart failure.
Resumo:
Congestive heart failure has long been one of the most serious medical conditions in the United States; in fact, in the United States alone, heart failure accounts for 6.5 million days of hospitalization each year. One important goal of heart-failure therapy is to inhibit the progression of congestive heart failure through pharmacologic and device-based therapies. Therefore, there have been efforts to develop device-based therapies aimed at improving cardiac reserve and optimizing pump function to meet metabolic requirements. The course of congestive heart failure is often worsened by other conditions, including new-onset arrhythmias, ischemia and infarction, valvulopathy, decompensation, end-organ damage, and therapeutic refractoriness, that have an impact on outcomes. The onset of such conditions is sometimes heralded by subtle pathophysiologic changes, and the timely identification of these changes may promote the use of preventive measures. Consequently, device-based methods could in the future have an important role in the timely identification of the subtle pathophysiologic changes associated with congestive heart failure.
Resumo:
AIMS Heart failure with preserved ejection fraction (HFpEF) has a different pathophysiological background compared to heart failure with reduced ejection fraction (HFrEF). Tailored risk prediction in this separate heart failure group with a high mortality rate is of major importance. Inflammation may play an important role in the pathogenesis of HFpEF because of its significant contribution to myocardial fibrosis. We therefore aimed to assess the predictive value of C-reactive protein (CRP) in patients with HFpEF. METHODS AND RESULTS Plasma levels of CRP were determined in 459 patients with HFpEF in the LUdwigshafen Risk and Cardiovascular Health (LURIC) study using a high-sensitivity assay. During a median follow-up of 9.7 years 40% of these patients died. CRP predicted all-cause mortality with an adjusted hazard ratio (HR) of 1.20 [95% confidence interval (CI) 1.02-1.40, P = 0.018] and cardiovascular mortality with a HR of 1.32 (95% CI 1.08-1.62, P = 0.005) per increase of one standard deviation. CRP was a significantly stronger mortality predictor in HFpEF patients than in a control group of 522 HFrEF patients (for interaction, P = 0.015). Furthermore, CRP added prognostic value to N-terminal pro B-type natriuretic peptide (Nt-proBNP): the lowest 5-year mortality rate of 6.8% was observed for patients in the lowest tertile of Nt-proBNP as well as CRP. The mortality risk peaked in the group combining the highest values of Nt-proBNP and CRP with a 5-year rate of 36.5%. CONCLUSION It was found that CRP was an independent and strong predictor of mortality in HFpEF. This observation may reflect immunological processes with an adverse impact on the course of HFpEF.
Resumo:
Aldosterone plays an important role in the pathophysiology of heart failure. Aldosterone receptor blockade has been shown to reduce morbidity and mortality in human patients with advanced congestive left ventricular heart failure. This study was designed to assess the efficacy and tolerance of long-term low-dose spironolactone when added to conventional heart failure treatment in dogs with advanced heart failure. Eighteen client-owned dogs with advanced congestive heart failure due to either degenerative valve disease (n=11) or dilated cardiomyopathy (n=7) were included in this prospective, placebo-controlled, double-blinded, randomized clinical study. After initial stabilization including furosemide, angiotensin-converting enzyme inhibitors, pimobendan and digoxin, spironolactone at a median dose of 0.52 mg/kg (range 0.49-0.8 mg/kg) once daily (n=9) or placebo (n=9) was added to the treatment, and the dogs were reassessed 3 and 6 months later. Clinical scoring, echocardiography, electrocardiogram, systolic blood pressure measurement, thoracic radiography, sodium, potassium, urea, creatinine, alanine aminotransferase, aldosterone and aminoterminal atrial natriuretic propeptide were assessed at baseline, 3 and 6 months. Survival times were not significantly different between the two treatment groups. Spironolactone was well tolerated when combined with conventional heart failure treatment.
Resumo:
AIMS Vent-HeFT is a multicentre randomized trial designed to investigate the potential additive benefits of inspiratory muscle training (IMT) on aerobic training (AT) in patients with chronic heart failure (CHF). METHODS AND RESULTS Forty-three CHF patients with a mean age of 58 ± 12 years, peak oxygen consumption (peak VO2 ) 17.9 ± 5 mL/kg/min, and LVEF 29.5 ± 5% were randomized to an AT/IMT group (n = 21) or to an AT/SHAM group (n = 22) in a 12-week exercise programme. AT involved 45 min of ergometer training at 70-80% of maximum heart rate, three times a week for both groups. In the AT/IMT group, IMT was performed at 60% of sustained maximal inspiratory pressure (SPImax ) while in the AT/SHAM group it was performed at 10% of SPImax , using a computer biofeedback trainer for 30 min, three times a week. At baseline and at 3 months, patients were evaluated for exercise capacity, lung function, inspiratory muscle strength (PImax ) and work capacity (SPImax ), quality of life (QoL), LVEF and LV diameter, dyspnoea, C-reactive protein (CRP), and NT-proBNP. IMT resulted in a significantly higher benefit in SPImax (P = 0.02), QoL (P = 0.002), dyspnoea (P = 0.004), CRP (P = 0.03), and NT-proBNP (P = 0.004). In both AT/IMT and AT/SHAM groups PImax (P < 0.001, P = 0.02), peak VO2 (P = 0.008, P = 0.04), and LVEF (P = 0.005, P = 0.002) improved significantly; however, without an additional benefit for either of the groups. CONCLUSION This randomized multicentre study demonstrates that IMT combined with aerobic training provides additional benefits in functional and serum biomarkers in patients with moderate CHF. These findings advocate for application of IMT in cardiac rehabilitation programmes.
Resumo:
OBJECTIVE To determine the short- and long-term effects of an intensive, concentrated rehabilitation programme in patients with chronic heart failure. DESIGN Randomized controlled trial, with one-month and six-year evaluations. SETTING Residential rehabilitation centre in Switzerland. SUBJECTS Fifty patients with chronic heart failure, randomized to exercise or control groups. INTERVENTIONS A rehabilitation programme lasting one month, including educational sessions, a low-fat diet, and 2 hours of individually prescribed exercise daily. MAIN MEASURES Exercise test responses, health outcomes and physical activity patterns. RESULTS Peak Vo(2) increased 21.4% in the exercise group during the rehabilitation programme (P<0.05), whereas peak Vo(2) did not change among controls. After the six-year follow-up period, peak Vo(2) was only slightly higher than that at baseline in the trained group (7%, NS), while peak Vo(2) among controls was unchanged. During long-term follow-up, 9 and 12 patients died in the exercise and control groups, respectively (P = 0.63). At six years, physical activity patterns tended to be higher in the exercise group; the mean energy expenditure values over the last year were 2,704 +/- 1,970 and 2,085 +/- 1,522 kcal/week during recreational activities for the exercise and control groups, respectively. However, both groups were more active compared to energy expenditure prior to their cardiac event (P<0.001). CONCLUSIONS Six years after participation in a residential rehabilitation programme, patients with chronic heart failure had slightly better outcomes than control subjects, maintained exercise capacity and engaged in activities that exceed the minimal amount recommended by guidelines for cardiovascular health.
Resumo:
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) represents a growing health burden associated with substantial mortality and morbidity. Consequently, risk prediction is of highest importance. Endothelial dysfunction has been recently shown to play an important role in the complex pathophysiology of HFpEF. We therefore aimed to assess von Willebrand factor (vWF), a marker of endothelial damage, as potential biomarker for risk assessment in patients with HFpEF. METHODS AND RESULTS Concentrations of vWF were assessed in 457 patients with HFpEF enrolled as part of the LUdwigshafen Risk and Cardiovascular Health (LURIC) study. All-cause mortality was observed in 40% of patients during a median follow-up time of 9.7 years. vWF significantly predicted mortality with a hazard ratio (HR) per increase of 1 SD of 1.45 (95% confidence interval, 1.26-1.68; P<0.001) and remained a significant predictor after adjustment for age, sex, body mass index, N-terminal pro-B-type natriuretic peptide (NT-proBNP), renal function, and frequent HFpEF-related comorbidities (adjusted HR per 1 SD, 1.22; 95% confidence interval, 1.05-1.42; P=0.001). Most notably, vWF showed additional prognostic value beyond that achievable with NT-proBNP indicated by improvements in C-Statistic (vWF×NT-proBNP: 0.65 versus NT-proBNP: 0.63; P for comparison, 0.004) and category-free net reclassification index (37.6%; P<0.001). CONCLUSIONS vWF is an independent predictor of long-term outcome in patients with HFpEF, which is in line with endothelial dysfunction as potential mediator in the pathophysiology of HFpEF. In particular, combined assessment of vWF and NT-proBNP improved risk prediction in this vulnerable group of patients.
Resumo:
BACKGROUND Unless effective preventive strategies are implemented, aging of the population will result in a significant worsening of the heart failure (HF) epidemic. Few data exist on whether baseline electrocardiographic (ECG) abnormalities can refine risk prediction for HF. METHODS We examined a prospective cohort of 2,915 participants aged 70 to 79 years without preexisting HF, enrolled between April 1997 and June 1998 in the Health, Aging, and Body Composition (Health ABC) study. Minnesota Code was used to define major and minor ECG abnormalities at baseline and at year 4 follow-up. Using Cox models, we assessed (1) the association between ECG abnormalities and incident HF and (2) the incremental value of adding ECG to the Health ABC HF Risk Score using the net reclassification index. RESULTS At baseline, 380 participants (13.0%) had minor, and 620 (21.3%) had major ECG abnormalities. During a median follow-up of 11.4 years, 485 participants (16.6%) developed incident HF. After adjusting for the Health ABC HF Risk Score variables, the hazard ratio (HR) was 1.27 (95% CI 0.96-1.68) for minor and 1.99 (95% CI 1.61-2.44) for major ECG abnormalities. At year 4, 263 participants developed new and 549 had persistent abnormalities; both were associated with increased subsequent HF risk (HR 1.94, 95% CI 1.38-2.72 for new and HR 2.35, 95% CI 1.82-3.02 for persistent ECG abnormalities). Baseline ECG correctly reclassified 10.5% of patients with HF events, 0.8% of those without HF events, and 1.4% of the overall population. The net reclassification index across the Health ABC HF risk categories was 0.11 (95% CI 0.03-0.19). CONCLUSIONS Among older adults, baseline and new ECG abnormalities are independently associated with increased risk of HF. The contribution of ECG screening for targeted prevention of HF should be evaluated in clinical trials.
Resumo:
Many end-stage heart failure patients are not eligible to undergo heart transplantation due to organ shortage, and even those under consideration for transplantation might suffer long waiting periods. A better understanding of the hemodynamic impact of left ventricular assist devices (LVAD) on the cardiovascular system is therefore of great interest. Computational fluid dynamics (CFD) simulations give the opportunity to study the hemodynamics in this patient population using clinical imaging data such as computed tomographic angiography. This article reviews a recent study series involving patients with pulsatile and constant-flow LVAD devices in which CFD simulations were used to qualitatively and quantitatively assess blood flow dynamics in the thoracic aorta, demonstrating its potential to enhance the information available from medical imaging.
Resumo:
AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.