982 resultados para great blood vessel
Resumo:
Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.
Resumo:
A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 mu L of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.
Resumo:
Lacchini S, Heimann AS, Evangelista FS, Cardoso L, Silva GJ, Krieger JE. Cuff-induced vascular intima thickening is influenced by titration of the Ace gene in mice. Physiol Genomics 37: 225-230, 2009. First published March 3, 2009; doi:10.1152/physiolgenomics.90288.2008.-We tested the hypothesis that small changes in angiotensin I-converting enzyme (ACE) expression can alter the vascular response to injury. Male mice containing one, two, three, and four copies of the Ace gene with no detectable vascular abnormality or changes in blood pressure were submitted to cuff-induced femoral artery injury. Femoral thickening was higher in 3- and 4-copy mice (42.4 +/- 4.3% and 45.7 +/- 6.5%, respectively) compared with 1- and 2-copy mice (8.3 +/- 1.3% and 8.5 +/- 0.9%, respectively). Femoral ACE levels from control and injured vessels were assessed in 1- and 3-copy Ace mice, which represent the extremes of the observed response. ACE vascular activity was higher in 3- vs. 1-copy Ace mice (2.4-fold, P < 0.05) in the control uninjured vessel. Upon injury, ACE activity significantly increased in both groups [2.41-fold and 2.14-fold (P < 0.05) for 1- and 3-copy groups, respectively] but reached higher levels in 3- vs. 1-copy Ace mice (P < 0.05). Pharmacological interventions were then used as a counterproof and to indirectly assess the role of angiotensin II (ANG II) on this response. Interestingly, ACE inhibition (enalapril) and ANG II AT(1) receptor blocker (losartan) reduced intima thickening in 3-copy mice to 1-copy mouse values (P < 0.05) while ANG II treatment significantly increased intima thickening in 1-copy mice to 3-copy mouse levels (P < 0.05). Together, these data indicate that small physiologically relevant changes in ACE, not associated with basal vascular abnormalities or blood pressure levels, do influence the magnitude of cuff-induced neointima thickening in mice.
Resumo:
center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.
Resumo:
Blood pressure (BP) assessment during resistance exercise can be useful to avoid high BP, reducing cardiovascular risk, especially in hypertensive individuals. However, non-invasive accurate technique for this purpose is not available. The aim of this study was to compare finger photoplethysmographic (FPP) and intra-arterial BP values and responses during resistance exercise. Eight non-medicated hypertensive subjects (5 males, 30-60 years) were evaluated during pre-exercise resting period and during three sets of the knee extension exercise performed at 80% of 1RM until fatigue. BP was measured simultaneously by FPP and intra-arterial methods. Data are mean +/- SD. Systolic BP was significantly higher with FPP than with intra-arterial: at pre-exercise (157 +/- 13 vs. 152 +/- 10 mmHg; p < 0.01) and the mean (202 +/- 29 vs. 198 +/- 26 mmHg; p < 0.01), and the maximal (240 +/- 26 vs. 234 +/- 16 mmHg; p < 0.05) values achieved during exercise. The increase in systolic BP during resistance exercise was similar between FPP and intra-arterial (+ 73 +/- 29 vs. + 71 +/- 18 mmHg; p = 0.59). Diastolic BP values and increases were lower with FPP. In conclusion, FPP provides similar values of BP increment during resistance exercise than intra-arterial method. However, it overestimates by 2.6 +/- 6.1% the maximal systolic BP achieved during this mode of exercise and underestimates by 8.8 +/- 5.8% the maximal diastolic BP.
Resumo:
Queiroz, ACC, Gagliardi, JFL, Forjaz, CLM, and Rezk, CC. Clinic and ambulatory blood pressure responses after resistance exercise. J Strength Cond Res 23(2): 571-578, 2009-This study investigated clinic and ambulatory blood pressure (BP) responses after a single bout of low-intensity resistance exercise in normotensive subjects. Fifteen healthy subjects underwent 2 experimental sessions: control-40 minutes of seated rest, and exercise-6 resistance exercises, with 3 sets of as many repetitions as possible until moderate fatigue, with an intensity of 50% of 1-repetition maximum (1RM). Before and for 60 minutes after interventions, clinic BP was measured by auscultatory and oscillometric methods. Postintervention ambulatory BP levels were also measured for 24 hours. In comparison with preintervention values, clinic systolic BP, as measured by the auscultatory method, did not change in the control group, but it decreased after exercise (-3.7 +/- 1.6 mm Hg, p < 0.05). Diastolic and mean BP levels increased after intervention in the control group (+3.4 +/- 1.0 and +3.0 +/- 0.8 mm Hg, respectively, p, 0.05) and decreased in the exercise group (-3.6 +/- 1.7 and -3.4 +/- 1.4 mm Hg, respectively, p < 0.05). Systolic and mean oscillometric BP levels did not change after interventions either in the control or exercise sessions, whereas diastolic BP increased after intervention in the control group (+5.0 +/- 1.7 mm Hg, p < 0.05) but not change after exercise. Ambulatory BP behaviors after interventions were similar in the control and exercise sessions. Significant and positive correlations were observed between preexercise values and postexercise clinic and ambulatory BP decreases. In conclusion, in the whole sample, a single bout of low-intensity resistance exercise decreased postexercise BP under clinic, but not ambulatory, conditions. However, considering individual responses, postexercise clinic and ambulatory hypotensive effects were greater in subjects with higher preexercise BP levels.
Resumo:
The objective of the present study was to verify if active recovery (AR) applied after a judo match resulted in a better performance when compared to passive recovery (PR) in three tasks varying in specificity to the judo and in measurement of work performed: four upper-body Wingate tests (WT); special judo fitness test (SJFT); another match. For this purpose, three studies were conducted. Sixteen highly trained judo athletes took part in study 1, 9 in study 2, and 12 in study 3. During AR judokas ran (15 min) at the velocity corresponding to 70% of 4 mmol l(-1) blood lactate intensity (similar to 50% (V) over dotO(2) peak), while during PR they stayed seated at the competition area. The results indicated that the minimal recovery time reported in judo competitions (15 min) is long enough for sufficient recovery of WT performance and in a specific high-intensity test (SJFT). However, the odds ratio of winning a match increased ten times when a judoka performed AR and his opponent performed PR, but the cause of this phenomenon cannot be explained by changes in number of actions performed or by changes in match`s time structure.
Resumo:
The aim of this study was to analyze the association between nutritional status and blood pressure in adolescents from a private school. Were recruited 316 young of both gender with age raging from 11 to 15 years old. Were measured body mass, stature, systolic blood pressure and diastolic blood pressure. The statistic procedures were composed by median, interquartile range, chi-square test and Poisson regression. The prevalence of overweight and high blood pressure was significantly higher in boys (38% and 24%, respectively) when compared to girls (19.3% and 14.4%, respectively). Overweight adolescents presented a higher risk (about 2-fold) to develop high blood pressure. In conclusion, overweight seems to be associate with high blood pressure in adolescents.
Resumo:
For percentage of body fat (%BF), there are no internationally accepted cutoffs. The primary function of body fat cutoffs should be to identify not only excessive body fatness, but also the increased risk of unhealthy outcomes, such as hypertension. The purpose of this study was to analyze the accuracy of different %BF and body mass index (BMI) cutoffs as screening measures for EBP in pediatric populations. It was a cross-sectional study with a sample of 358 male subjects from 8 to 18 years old. BP was measured by the oscilometric method, and body composition was measured by dual-energy X-ray absorptiometry (DXA). The accuracy of three reference tables used for body fat cutoffs was assessed. The three body fat reference tables were highly specific, but insensitive, for elevated BP screening. For elevated BP screening, all body fat cutoffs presented similar sensitivity (range=48.3-53.7%) and specificity (range=79.2-84.1%). The body fat cutoffs performed no better than BMI in screening of children and adolescents at risk of elevated BP (EBP). BMI seems a more attractive tool for this function, as it performed similarly and can be applied in large surveys and with lower costs. Hypertension Research (2011) 34, 963-967; doi:10.1038/hr.2011.61; published online 26 May 2011
Resumo:
Objectives To analyze the association between resting heart rate and blood pressure in male children and adolescents and to identify if this association is mediated by important confounders. Study design Cross-sectional study carried out with 356 male children and adolescents from 8 to 18 years old. Resting heart rate was measured by a portable heart rate monitor according to recommendations and stratified into quartiles. Blood pressure was measured with an electronic device previously validated for pediatric populations. Body fatness was estimated by a dual-energy x-ray absorptiometry. Results Obese subjects had values of resting heart rate 7.8% higher than nonobese (P = .001). Hypertensive children and adolescents also had elevated values of resting heart rate (P = .001). When the sample was stratified in nonobese and obese, the higher quartile of resting heart rate was associated with hypertension in both groups of children and adolescents. Conclusions This study confirms the existence of a relationship between elevated resting heart rate and increased blood pressure in a pediatric population, independent of adiposity, ethnicity and age. (J Pediatr 2011; 158:634-7).
Resumo:
The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
In this paper, 2 different approaches for estimating the directional wave spectrum based on a vessel`s 1st-order motions are discussed, and their predictions are compared to those provided by a wave buoy. The real-scale data were obtained in an extensive monitoring campaign based on an FPSO unit operating at Campos Basin, Brazil. Data included vessel motions, heading and tank loadings. Wave field information was obtained by means of a heave-pitch-roll buoy installed in the vicinity of the unit. `two of the methods most widely used for this kind of analysis are considered, one based on Bayesian statistical inference, the other consisting of a parametrical representation of the wave spectrum. The performance of both methods is compared, and their sensitivity to input parameters is discussed. This analysis complements a set of previous validations based on numerical and towing-tank results and allows for a preliminary evaluation of reliability when applying the methodology at full scale.
Resumo:
In the development of a ventricular assist device, computational fluid dynamics (CFD) analysis is an efficient tool to obtain the best design before making the final prototype. In this study, different designs of a centrifugal blood pump were developed to investigate flow characteristics and performance. This study assumed the blood flow as being an incompressible homogeneous Newtonian fluid. A constant velocity was applied at the inlet; no slip boundary conditions were applied at device wall; and pressure boundary conditions were applied at the outlet. The CFD code used in this work was based on the finite volume method. In the future, the results of CFD analysis can be compared with flow visualization and hemolysis tests.
Resumo:
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.