865 resultados para glucose-oxidase
Resumo:
The aim of this work was to evaluate the influence of the enzyme cholesterol oxidase (Coase) on emergence and viability of larvae of the cotton boll weevil (Anthonomus grandis Boheman, 1843). A series of bioassays was performed with eggs and neonate larvae exposed to different enzyme concentrations in artificial diet. Larval survival was affected at all enzyme concentrations tested, and the six-day LD50 was 53 mug/mL (CI 95%: 43-59). Coase also interfered with hatching of larvae after eggs were floated for 15 min in Coase solution at different concentrations. Observations at the light and electronic microscopic level of midguts from larvae fed on artificial diet containing 53 mug/mL of Coase and collected at six days revealed highly vacuolated regions in the epithelial cells as well as partial degradation of the basal membrane and microvilli.
Resumo:
Rapport de Synthèse : Introduction : outre son effet bénéfique sur le poids, la chirurgie bariatrique améliore de façon considérable l'homéostasie glucide chez les patients diabétiques. Cette amélioration survient très tôt dans la période post-opératoire, avant que le poids ne soit réduit de manière importante. De plus, les interventions chirurgicales qui "court-circuitent" une partie de l'intestin grêle, telle que le by-pass gastrique, apparaissent être plus efficaces que les interventions purement restrictives, telles que le cerclage gastrique. Objectifs : cette étude a pour but d'étudier la cinétique du glucose et la sécrétion d'hormones gastro-intestinales, consécutive à l'ingestion d'une dose charge de glucose, chez des patients opérés d'un by-pass ou d'un cerclage gastrique. Méthodes : nous avons comparé des groupes de femmes non diabétiques ayant bénéficié d'un by-pass gastrique (BPG, n=8) ou d'un cerclage gastrique (CG, n=6) à un groupe de femmes contrôles d'âge et de poids appariées n'ayant subi aucune intervention bariatrique (C, n=8). L'étude a été réalisée alors que le poids des volontaires était stable, soit entre 9 et 48 mois après le BPG, et 25 à 85 mois après le CG. Nous avons étudié, pendant les 4 heures qui ont suivies l'ingestion d'une dose charge de glucose; la cinétique du glucose ingéré et du glucose total à l'aide d'un glucose radio-activement marqué, ainsi que la cinétique de l'insuline et de différentes hormones gastro-intestinales. Résultats : l'apparition du glucose exogène dans la circulation systémique est plus rapide chez les patients opérés d'un BPG et s'accompagne d'une hyperglycémie postprandiale plus brève. La réponse insulinique est également plus précoce et plus importante que dans les deux autres groupes. S'agissant des hormones gastro-intestinales, on observe dans la période postprandiale une augmentation de PYY et de GLP-1 et une suppression de la grehline significativement plus importante après BPG. Discussion : ces différentes observations suggèrent que le BPG est associé à de profonds changements de la cinétique du glucose et des altérations de la régulation d'hormones gastro-intestinales. Les modifications susmentionnées apparaissant être secondaires aux modifications anatomiques consécutives au BPG, i.e. la mise "hors-circuit" de l'estomac distal et de l'intestin grêle proximal, compte tenu du fait qu'elles ne sont pas observées après CG. Finalement, la stimulation de PYY et de GLP-1 ainsi que la suppression postprandiale plus importante de ghréline est compatible avec la diminution spontanée de la prise alimentaire observée chez les patients opérés d'un BPG.
Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest.
Resumo:
Type 1 diabetic patients depend on external insulin delivery to keep their blood glucose within near-normal ranges. In this work, two robust closed-loop controllers for blood glucose regulation are developed to prevent the life-threatening hypoglycemia, as well as to avoid extended hyperglycemia. The proposed controllers are designed by using the sliding mode control technique in a Smith predictor structure. To improve meal disturbance rejection, a simple feedforward controller is added to inject meal-time insulin bolus. Simulations scenarios were used to test the controllers, and showed the controllers ability to maintain the glucose levels within the safe limits in the presence of errors in measurements, modeling and meal estimation
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation
Resumo:
OBJECTIVE: Although genetic factors have been implicated in the etiology of bipolar disorder, no specific gene has been conclusively identified. Given the link between abnormalities in serotonergic neurotransmission and bipolar disorder, a candidate gene association approach was applied to study the involvement of the monoamine oxidase A (MAOA) gene, which codes for a catabolic enzyme of serotonin, in the susceptibility to bipolar disorder. METHOD: In France and Switzerland, 272 patients with bipolar disorder and 122 healthy subjects were typed for three polymorphic markers of the MAOA gene: the MAOA-CA repeat, the MAOA restriction fragment length polymorphism (RFLP), and a repeat directly adjacent to the variable number of tandem repeats (VNTR) locus. RESULTS: A significant difference in the distribution of the alleles for the MAOA-CA repeat was observed between the female bipolar patients and comparison group. CONCLUSIONS: The results obtained in the French and Swiss population confirm findings from two studies conducted in the United Kingdom.
Resumo:
Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by the endocrine K-cells from the duodenum that stimulates glucose-induced insulin secretion. Here, we present the molecular characterization of the human pancreatic islet GIP receptor. cDNA clones for the GIP receptor were isolated from a human pancreatic islet cDNA library. They encoded two different forms of the receptor, which differed by a 27-amino acid insertion in the COOH-terminal cytoplasmic tail. The receptor protein sequence was 81% identical to that of the rat GIP receptor. When expressed in Chinese hamster lung fibroblasts, both forms of the receptor displayed high-affinity binding for GIP (180 and 600 pmol/l). GIP binding was displaced by < 20% by 1 mumol/l glucagon, glucagon-like peptide (GLP-I)(7-36) amide, vasoactive intestinal peptide, and secretin. However exendin-4 and exendin-(9-39) at 1 mumol/l displaced binding by approximately 70 and approximately 100% at 10 mumol/l. GIP binding to both forms of the receptor induced a dose-dependent increase in intracellular cAMP levels (EC50 values of 0.6-0.8 nmol/l) but no elevation of cytoplasmic calcium concentrations. Interestingly, both exendin-4 and exendin-(9-39) were antagonists of the receptor, inhibiting GIP-induced cAMP formation by up to 60% when present at a concentration of 10 mumol/l. Finally, the physical and genetic chromosomal localization of the receptor gene was determined to be on 19q13.3, close to the ApoC2 gene. These data will help study the physiology and pathophysiology of the human GIP receptor.
Resumo:
Consumption of simple carbohydrates has markedly increased over the past decades, and may be involved in the increased prevalence in metabolic diseases. Whether an increased intake of fructose is specifically related to a dysregulation of glucose and lipid metabolism remains controversial. We therefore compared the effects of hypercaloric diets enriched with fructose (HFrD) or glucose (HGlcD) in healthy men. Eleven subjects were studied in a randomised order after 7 d of the following diets: (1) weight maintenance, control diet; (2) HFrD (3.5 g fructose/kg fat-free mass (ffm) per d, +35 % energy intake); (3) HGlcD (3.5 g glucose/kg ffm per d, +35 % energy intake). Fasting hepatic glucose output (HGO) was measured with 6,6-2H2-glucose. Intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured by 1H magnetic resonance spectroscopy. Both fructose and glucose increased fasting VLDL-TAG (HFrD: +59 %, P < 0.05; HGlcD: +31 %, P = 0.11) and IHCL (HFrD: +52 %, P < 0.05; HGlcD: +58 %, P = 0.06). HGO increased after both diets (HFrD: +5 %, P < 0.05; HGlcD: +5 %, P = 0.05). No change was observed in fasting glycaemia, insulin and alanine aminotransferase concentrations. IMCL increased significantly only after the HGlcD (HFrD: +24 %, NS; HGlcD: +59 %, P < 0.05). IHCL and VLDL-TAG were not different between hypercaloric HFrD and HGlcD, but were increased compared to values observed with a weight maintenance diet. However, glucose led to a higher increase in IMCL than fructose.
Resumo:
Glucose-induced thermogenesis (GIT) after a 100-g oral glucose load was measured by continuous indirect calorimetry in 32 nondiabetic and diabetic obese subjects and compared to 17 young and 13 middle aged control subjects. The obese subjects were divided into three groups: A (n = 12) normal glucose tolerance, B (n = 13) impaired glucose tolerance, and C (n = 7) diabetics, and were studied before and after a body weight loss ranging from 9.6 to 33.5 kg consecutive to a 4 to 6 months hypocaloric diet. GIT, measured over 3 h and expressed as percentage of the energy content of the load, was significantly reduced in obese groups A and C (6.2 +/- 0.6, and 3.8 +/- 0.7%, respectively) when compared to their age-matched control groups: 8.6 +/- 0.7 (young) and 5.8 +/- 0.3% (middle aged). Obese group B had a GIT of 6.1 +/- 0.6% which was lower than that of the young control group but not different from the middle-aged control group. After weight loss, GIT in the obese was further reduced in groups A and B than before weight loss: ie, 3.4 +/- 0.6 (p less than 0.001), 3.7 +/- 0.5 (p less than 0.01) respectively, whereas in group C, weight loss induced no further diminution in GIT (3.8 +/- 0.6%). These results support the concept of a thermogenic defect after glucose ingestion in obese individuals which is not the consequence of their excess body weight but may be one of the factors favoring the relapse of obesity after weight loss.
Resumo:
GLUT2-null mice are hyperglycemic, hypoinsulinemic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life. Their endocrine pancreas shows a loss of first phase glucose-stimulated insulin secretion (GSIS) and inverse alpha to beta cell ratio. Here we show that reexpression by transgenesis of either GLUT1 or GLUT2 in the pancreatic beta cells of these mice allowed mouse survival and breeding. The rescued mice had normal-fed glycemia but fasted hypoglycemia, glycosuria, and an elevated glucagon to insulin ratio. Glucose tolerance was, however, normal. In vivo, insulin secretion assessed following hyperglycemic clamps was normal. In vitro, islet perifusion studies revealed that first phase of insulin secretion was restored as well by GLUT1 or GLUT2, and this was accompanied by normalization of the glucose utilization rate. The ratio of pancreatic insulin to glucagon and volume densities of alpha to beta cells were, however, not corrected. These data demonstrate that 1) reexpression of GLUT1 or GLUT2 in beta cells is sufficient to rescue GLUT2-null mice from lethality, 2) GLUT1 as well as GLUT2 can restore normal GSIS, 3) restoration of GSIS does not correct the abnormal composition of the endocrine pancreas. Thus, normal GSIS does not depend on transporter affinity but on the rate of uptake at stimulatory glucose concentrations.
Resumo:
Glucose is an important signal that regulates glucose and energy homeostasis but its precise physiological role and signaling mechanism in the brain are still uncompletely understood. Over the recent years we have investigated the possibility that central glucose sensing may share functional similarities with glucose sensing by pancreatic beta-cells, in particular a requirement for the expression of the glucose transporter Glut2. Using mice with genetic inactivation of Glut2, but rescued pancreatic beta-cell function by transgenic expression of a glucose transporter, we have established that extrapancreatic glucose sensors are involved: i) in the control of glucagon secretion in response to hypoglycemia, ii) in the control of feeding and iii) of energy expenditure. We have more recently shown that central Glut2-dependent glucose sensors are involved in the regulation of NPY and POMC expression by arcuate nucleus neurons and that the sensitivity to leptin of these neurons is enhanced by Glut2-dependent glucose sensors. Using mice with genetic tagging of Glut2-expressing cells, we determined that the NPY and POMC neurons did not express Glut2 but were connected to Glut2 expressing neurons located most probably outside of the arcuate nucleus. We are now defining the electrophysiological behavior of these Glut2 expressing neurons. Our data provide an initial map of glucose sensing neurons expressing Glut2 and link these neurons with the control of specific physiological function.
Resumo:
The effect of amino acid and/or glucose administration before and during exercise on protein metabolism in visceral tissues and skeletal muscle was examined in mongrel dogs. The dogs were subjected to treadmill running (150 minutes at 10 km/h and 12% incline) and intravenously infused with a solution containing amino acids and glucose (AAG), amino acids (AA), glucose (G) or saline (S) in randomized order. The infusion was started 60 minutes before exercise and continued until the end of the exercise period. An arteriovenous-difference technique was used to estimate both tissue protein degradation and synthesis. When S was infused, the release of leucine (Leu) from the gut and phenylalanine (Phe) from the hindlimb significantly increased during exercise, thus indicating that exercise augmented proteolysis in these tissues. The balance of Leu across the gut during exercise demonstrated a net uptake with both AAG and AA, whereas a net release was observed for G and S. In addition, Leu uptake in the gut during the last 90 minutes of the exercise period tended to be greater with AAG versus AA (P = .06). Phe balance across the hindlimb during the late exercise period showed a significant release with S, AA, and G, whereas the balance with AAG did not show a significant release. These results suggest that exercise-induced proteolysis in the gut may be reduced by supplementation with AA, and this effect may be enhanced by concomitant G administration. However, in skeletal muscle, both AA and G may be required to prevent net protein degradation during exercise. G provided without AA did not achieve net protein synthesis in either tissue.
Resumo:
Phan-Hug F, Thurneysen E, Theintz G, Ruffieux C, Grouzmann E. Impact of videogame playing on glucose metabolism in children with type 1 diabetes. Time spent playing videogames (VG) occupies a continually increasing part of children's leisure time. They can generate an important state of excitation, representing a form of mental and physical stress. This pilot study aimed to assess whether VG influences glycemic balance in children with type 1 diabetes. Twelve children with type 1 diabetes were subjected to two distinct tests at a few weeks interval: (i) a 60-min VG session followed by a 60-min rest period and (ii) a 60-min reading session followed by a 60-min rest period. Heart rate, blood pressure, glycemia, epinephrine (E), norepinephrine (NE), cortisol (F), and growth hormone (GH) were measured at 30 min intervals from -60 to +120 min. Non-parametric Wilcoxon tests for paired data were performed on Δ-values computed from baseline (0 min). Rise in heart rate (p = 0.05) and NE increase (p = 0.03) were shown to be significantly higher during the VG session when compared to the reading session and a significant difference of Δ-glycemic values was measured between the respective rest periods. This pilot study suggests that VG playing could induce a state of excitation sufficient to activate the sympathetic system and alter the course of glycemia. Dietary and insulin dose recommendations may be needed to better control glycemic excursion in children playing VG.
Resumo:
We evaluated the role of the G alpha-q (Galphaq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Galphaq function by single cell microinjection of anti-Galphaq/11 antibody or RGS2 protein (a GAP protein for Galphaq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Galphaq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Galphaq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Galphaq (WT-Galphaq) or a constitutively active Galphaq mutant (Q209L-Galphaq) by using an adenovirus expression vector. In the basal state, Q209L-Galphaq expression stimulated 2-deoxy-D-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Galphaq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Galphaq stimulates PI3-kinase activity in p110alpha and p110gamma immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110alpha by 10-fold. Nevertheless, only microinjection of anti-p110alpha (and not p110gamma) antibody inhibited both insulin- and Q209L-Galphaq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Galphaq are dependent on the p110alpha subunit of PI3-kinase. In summary, (i) Galphaq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Galphaq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Galphaq can transmit signals from the insulin receptor to the p110alpha subunit of PI3-kinase, which leads to GLUT4 translocation.