919 resultados para glass-ionomer cement
Exploring the potential of functionally graded materials concept for the development of fiber cement
Resumo:
In this study we establish the concept of functionally graded fiber cement. We discuss the use of statistical mixture designs to choose formulations and present ideas for the production of functionally graded fiber cement components for Hatschek machines. The feasibility of producing functionally graded fiber cement by grading PVA fiber content has been experimentally evaluated. Thermogravimetric analysis (TG) was employed to assess fiber distribution profiles and four-point bending tests were applied to evaluate the mechanical performance of both conventional and graded composites. The results show that grading PVA fiber content is an effective way to produce functionally graded fiber cement, which allows for a reduction of the total fiber volume without a significant reduction on modulus of rupture of composite. TG tests were found adequate to assess the fiber content at different points in functionally graded fiber cements. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results of laboratory testing of unrestrained drying shrinkage during a period of 154 days of different concrete mixtures from the Brazilian production line that utilize ground granulated blast-furnace slag in their compositions. Three concrete mixtures with water/cement ratio of 0.78(M1), 0.41(M2), and 0.37(M3) were studied. The obtained experimental data were compared with the analytical results from prediction models available in the literature: the ACI 209 model (ACI), the B3 model (B3), the Eurocode 2 model (EC2), the GL 2000 model (GL), and the Brazilian NBR 6118 model (NBR), and an analysis of the efficacy of these models was conducted utilizing these experimental data. In addition, the development of the mechanical properties (compressive strength and modulus of elasticity) of the studied concrete mixtures was also measured in the laboratory until 126 days. From this study, it could be concluded that the ACI and the GL were the models that most approximated the experimental drying shrinkage data measured during the analyzed period of time.
Resumo:
Urban rainfall-runoff residuals contain metals such as Cr, Zn, Cu, As, Pb and Cd and are thus reasonable candidates for treatment using Portland cement-based solidification-stabilization (S/S). This research is a study of S/S of urban storm water runoff solid residuals in Portland cement with quicklime and sodium bentonite additives. The solidified residuals were analyzed after 28 days of hydration time using X-ray powder diffraction (XRD) and solid-state Si-29 nuclear magnetic resonance (NMR) spectroscopy. X-ray diffraction (XRD) results indicate that the main cement hydration products are ettringite, calcium hydroxide and hydrated calcium silicates. Zinc hydroxide and lead and zinc silicates are also present due to the reactions of the waste compounds with the cement and its hydration products. Si-29 NMR analysis shows that the coarse fraction of the waste apparently does not interfere with cement hydration, but the fine fraction retards silica polymerization.
Resumo:
The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
Green tapes of Li(2)O-ZrO(2)-SiO(2)-Al(2)O(3) (LZSA) parent glass were produced by aqueous tape casting as the starting material for the laminated object manufacturing (LOM) process. The rheological behavior of the powder suspensions in aqueous media, as well as the mechanical properties of the cast tapes, was evaluated. According to xi potential measurements, the LZSA glass powder particles showed acid surface characteristics and an IEP of around 4 when in aqueous media. The critical volume fraction of solids was about 72 wt% (27 vol%), which hindered the processability of more concentrated slurries. The glass particles also showed an anisometric profile, which contributed to an increase in the interactions between particles during flow. Therefore, the suspensions could not be processed at high solids loadings. Aqueous-based glass suspensions were also characterized by shear thickening after the addition of dispersants. Three slurry compositions were formulated, suitable green tapes were cast, and tapes were successfully laminated by LOM to a gear wheel geometry. A higher tensile strength of the green tapes corresponded to a higher tensile strength of the laminates. Thermal treatment was then applied to the laminates: pyrolysis at 525 degrees C, sintering at 700 degrees C for 1 h, and crystallization at 850 degrees C for 30 min. A 20% volumetric shrinkage was observed, but no surface flaws or inhomogeneous areas were detected. The sintered part maintained the curved edges and internal profile after heat treatment.
Resumo:
Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies the performance of fiber-cement corrugated sheets exposed to long-term weathering, exploring the effect of different environments on fiber-cement degradation. Fiber-cement corrugated sheets that had been exposed to weathering, and in place for more than 30-years, were collected from two different Brazilian cities (Sao Paulo and Criciuma). Mechanical properties (MOR, MOE and fracture toughness) were tested on samples removed from the corrugated sheets. Microstructure was evaluated by X-ray diffraction, SEM with EDS analysis, MIP and TG. The results show that the 37-year-old asbestos-cement corrugated sheets from Sao Paulo presented similar characteristics to those of the non-aged asbestos-cement readily available on the market place. Conversely, deterioration of the asbestos-cement from the industrial area of Criciuma is related to acidic attack, along with carbonation and leaching as a consequence of continued exposition to acid rain during several decades. This process resulted in higher porosity and lower mechanical strength, revealing that leaching mechanisms can have important effect on the performance of thin fiber-cement sheets. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
At present, the cement industry generates approximately 5% of the world`s anthropogenic CO(2) emissions. This share is expected to increase since demand for cement based products is forecast to multiply by a factor of 2.5 within the next 40 years and the traditional strategies to mitigate emissions, focused on the production of cement, will not be capable of compensating such growth. Therefore, additional mitigation strategies are needed, including an increase in the efficiency of cement use. This paper proposes indicators for measuring cement use efficiency, presents a benchmark based on literature data and discusses potential gains in efficiency. The binder intensity (bi) index measures the amount of binder (kg m(-3)) necessary to deliver 1 MPa of mechanical strength, and consequently express the efficiency of using binder materials. The CO(2) intensity index (ci) allows estimating the global warming potential of concrete formulations. Research benchmarks show that bi similar to 5 kg m(-3) MPa(-1) are feasible and have already been achieved for concretes >50 MPa. However, concretes with lower compressive strengths have binder intensities varying between 10 and 20 kg m(-3) MPa(-1). These values can be a result of the minimum cement content established in many standards and reveal a significant potential for performance gains. In addition, combinations of low bi and ci are shown to be feasible. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aiming the use of the sewage sludge produced in one of the largest Brazilian wastewater treatment stations as a raw material for the ceramic industry, the sintering process of the ashes produced from its calcination was evaluated by heating microscopy thermal analysis (HMTA). From the microprocessed images, a method was developed to obtain HMTA dimensional change curves as a function of temperature, equivalent to those usually obtained from dilatometers or by thermomechanical analysis (TMA). The final product after sintering at 1050 degrees C, characterized by X-ray fluorescence spectrometry, scanning electron microscopy and X-ray dispersive energy, indicates the presence of a vitreous phase containing phosphorus, which explains the good sintering properties of the studied calcined sludge, as shown from its HMTA dimensional change curve.
Resumo:
P>The aim of this comparative clinical study was to evaluate a novel bioactive glass-ceramic (Biosilicate (R) 1-20 mu m particles) to treat dentine hypersensitivity (DH). Volunteers (n = 120 patients/ 230 teeth) received the following treatments: G1-Sensodyne (R), G2-SensiKill (R), G3-Biosilicate (R) incorporated in a 1% water-free-gel and G4-Biosilicate (R) mixed with distilled water at 1:10 ratio. G1 and G3 were applied at home, daily for 30 days; G2 and G4 were applied once a week by a dentist (four applications). A visual analogue scale (VAS) was employed to evaluate pain for each quadrant in one sensitive tooth at baseline, weekly during treatment and during a 6-month follow-up period. Dentine hypersensitivity values (G1/n = 52), (G2/n = 62), (G3/n = 59) and (G4/n = 59) were analysed with Kruskal-Wallis/Dunn tests. All the products were efficient in reducing DH after 4 weeks. Among the four materials tested, G4 demonstrated the best clinical performance and provided the fastest treatment to reduce DH pain. Distilled water proved to be an adequate vehicle to disperse Biosilicate (R). Low DH scores were maintained during the 6-month follow-up period. The hypothesis that the novel bioactive glass-ceramic may be an efficient treatment for DH was confirmed.
Resumo:
As seen from interior.
Resumo:
Spin glasses are magnetic systems with conflicting and random interactions between the individual spins. The dynamics of spin glasses, as of structural glasses, reflect their complexity. Both in experimental and numerical work the relaxation below the freezing temperature depends strongly on the annealing conditions (aging) and, above the freezing point, relaxation in equilibrium is slow and non-exponential, In this Forum, observed characteristics of the dynamics were summarized and the physical models proposed to explain them were outlined. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The general-care glass ceiling hypothesis states that not only is it more difficult for women than for men to be promoted up levels of authority hierarchies within workplaces but also that the obstacles women face relative to men become greater as they move rtp the hierarchy. Gender-based discrimination in promotions is not simply present across levels of hierarchy but is more intense at higher levels. Empirically, this implies that the relative rates of women being promoted to higher levels compared to men should decline with the level of the hierarchy. This article explores this hypothesis with data from three countries: the United States, Australia, and Sweden. The basic conclusion is that while there is strong evidence for a general gender gap in authority-the odds of women having authority are less than those of men-there is no evidence for systematic glass ceiling effects in the United States and only weak evidence for such effects in the other two countries.