928 resultados para genomics
Resumo:
Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.
Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data
Resumo:
We present a nonparametric Bayesian method for disease subtype discovery in multi-dimensional cancer data. Our method can simultaneously analyse a wide range of data types, allowing for both agreement and disagreement between their underlying clustering structure. It includes feature selection and infers the most likely number of disease subtypes, given the data. We apply the method to 277 glioblastoma samples from The Cancer Genome Atlas, for which there are gene expression, copy number variation, methylation and microRNA data. We identify 8 distinct consensus subtypes and study their prognostic value for death, new tumour events, progression and recurrence. The consensus subtypes are prognostic of tumour recurrence (log-rank p-value of $3.6 \times 10^{-4}$ after correction for multiple hypothesis tests). This is driven principally by the methylation data (log-rank p-value of $2.0 \times 10^{-3}$) but the effect is strengthened by the other 3 data types, demonstrating the value of integrating multiple data types. Of particular note is a subtype of 47 patients characterised by very low levels of methylation. This subtype has very low rates of tumour recurrence and no new events in 10 years of follow up. We also identify a small gene expression subtype of 6 patients that shows particularly poor survival outcomes. Additionally, we note a consensus subtype that showly a highly distinctive data signature and suggest that it is therefore a biologically distinct subtype of glioblastoma. The code is available from https://sites.google.com/site/multipledatafusion/
Resumo:
Background: Cytochrome P450 monooxygenases play key roles in the metabolism of a wide variety of substrates and they are closely associated with endocellular physiological processes or detoxification metabolism under environmental exposure. To date, however, none has been systematically characterized in the phylum Ciliophora. T. thermophila possess many advantages as a eukaryotic model organism and it exhibits rapid and sensitive responses to xenobiotics, making it an ideal model system to study the evolutionary and functional diversity of the P450 monooxygenase gene family. Results: A total of 44 putative functional cytochrome P450 genes were identified and could be classified into 13 families and 21 sub-families according to standard nomenclature. The characteristics of both the conserved intron-exon organization and scaffold localization of tandem repeats within each P450 family clade suggested that the enlargement of T. thermophila P450 families probably resulted from recent separate small duplication events. Gene expression patterns of all T. thermophila P450s during three important cell physiological stages (vegetative growth, starvation and conjugation) were analyzed based on EST and microarray data, and three main categories of expression patterns were postulated. Evolutionary analysis including codon usage preference, sit-especific selection and gene-expression evolution patterns were investigated and the results indicated remarkable divergences among the T. thermophila P450 genes. Conclusion: The characterization, expression and evolutionary analysis of T. thermophila P450 monooxygenase genes in the current study provides useful information for understanding the characteristics and diversities of the P450 genes in the Ciliophora, and provides the baseline for functional analyses of individual P450 isoforms in this model ciliate species.
Resumo:
Background: Short and long interspersed elements (SINEs and LINEs, respectively), two types of retroposons, are active in shaping the architecture of genomes and powerful tools for studies of phylogeny and population biology. Here we developed special protocol to apply biotin-streptavidin bead system into isolation of interspersed repeated sequences rapidly and efficiently, in which SINEs and LINEs were captured directly from digested genomic DNA by hybridization to bead-probe complex in solution instead of traditional strategy including genomic library construction and screening. Results: A new couple of SINEs and LINEs that shared an almost identical 3'tail was isolated and characterized in silver carp and bighead carp of two closely related species. These SINEs (34 members), designated HAmo SINE family, were little divergent in sequence and flanked by obvious TSD indicated that HAmo SINE was very young family. The copy numbers of this family was estimated to 2 x 10(5) and 1.7 x 10(5) per haploid genome by Real-Time qPCR, respectively. The LINEs, identified as the homologs of LINE2 in other fishes, had a conserved primary sequence and secondary structures of the 3'tail region that was almost identical to that of HAmo SINE. These evidences suggest that HAmo SINEs are active and amplified recently utilizing the enzymatic machinery for retroposition of HAmoL2 through the recognition of higher-order structures of the conserved 42-tail region. We analyzed the possible structures of HAmo SINE that lead to successful amplification in genome and then deduced that HAmo SINE, SmaI SINE and FokI SINE that were similar in sequence each other, were probably generated independently and created by LINE family within the same lineage of a LINE phylogeny in the genomes of different hosts. Conclusion: The presented results show the advantage of the novel method for retroposons isolation and a pair of young SINE family and its partner LINE family in two carp fishes, which strengthened the hypotheses containing the slippage model for initiation of reverse transcription, retropositional parasitism of SINEs on LINEs, the formation of the stem loop structure in 3'tail region of some SINEs and LINEs and the mechanism of template switching in generating new SINE family.
Resumo:
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.
Resumo:
ES cells provide a promising tool for the generation of transgenic animals with site-directed mutations. When ES cells colonize germ cells in chimeras, transgenic animals with modified phenotypes are generated and used either for functional genomics studies or for improving productivity in commercial settings. Althought the ES cell approach has been limited to, mice, there is strong interest for developing the technology in fish.. We describe the step-by-step procedure for developing ES cells in fish. Key aspects include avoiding cell differentiation, specific in vitro traits of pluripotency, and, most importantly, testing for production of chimeric animals as the main evidence of pluripotency. The entire process focuses on two model species, zebrafish and medaka, in which most work has been done. The achievements attained in these species, as well as their applicability to other commercial fish, are discussed. Because of the difficulties relating to germ line competence, mostly of long-term fish ES cells, alternative cell-based approaches such as primordial germ cells and nuclear transfer need to be considered. Although progress to date has been slow, there are promising achievements in homologous recombination and alternative avenues yet to be explored that can bring ES technology in fish to fruition.
Resumo:
Purification of genotypes from baculovirus isolates provides understanding of the diversity of baculoviruses and may lead to the development of better pesticides. Here, we report the cloning of different genotypes from an isolate of Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV) by using a bacterial artificial chromosome (BAC). A transfer vector (pHZB10) was constructed which contained an Escherichia coli mini-F replicon cassette within the upstream and downstream arms of HaSNPV polyhedrin gene. Hz2e5 cells were co-transfected with wild-type HaSNPV DNA and pHZB10 to generate recombinant viruses by homologous recombination. The DNA of budded viruses (BVs) was used to transform E. coli. One of the bacmid colonies, HaBacHZ8, has restriction enzyme digestion profiles similar to an in vivo cloned strain HaSNPV-G4, the genome of which has been completely sequenced. For testing the oral infectivity, the polyhedrin gene of HaSNPV was reintroduced into HaBacHZ8 to generate the recombinant bacmid HaBacDF6. The results of one-step growth curves, electron microscopic examination, protein expression analysis and bioassays indicated that HaBacDF6 replicated as well as HaSNPV-G4 in vitro and in vivo. The biologically functional HaSNPV bacmids obtained in this research will facilitate future studies on the function genomics and genetic modification of HaSNPV. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Nematoda is a metazoan group with extremely high diversity only next to Insecta. Caenorhabditis elegans is now a favorable experimental model animal in modern developmental biology, genetics and genomics; studies. However, the phylogeny of Nematoda and the phylogenetic position of the phylum within animal kingdom have long been in debate. Recent molecular phylogenetic studies gave great challenges to the traditional nematode classification. The new phylogenies not only placed the Nematoda in the Ecdysozoan and divided the phylum into five clades, but also provided new insights into animal molecular identification and phylogenetic biodiversity studies. The present paper reviews major progress and remaining problems in the current molecular phylogenetic studies of Nematoda, and prospects the developmental tendencies of this field.
Resumo:
As one of the most powerful tools in biomedical research, DNA sequencing not only has been improving its productivity in an exponential growth rate but also been evolving into a new layout of technological territories toward engineering and physical disciplines over the past three decades. In this technical review, we look into technical characteristics of the next-gen sequencers and provide prospective insights into their future development and applications. We envisage that some of the emerging platforms are capable of supporting the $1000 genome and $100 genome goals if given a few years for technical maturation. We also suggest that scientists from China should play an active role in this campaign that will have profound impact on both scientific research and societal healthcare systems.
Resumo:
自然界丰富的生物多样性不断地激发着包括达尔文在内所有生物学家的研 究热情。自从达尔文进化论提出以来,进化生物学所要回答的一个基本问题就 是生物是如何从一个共同祖先进化到如此丰富多样的。随着分子生物学中心法 则的发现和基因组时代的到来,比较不同物种的基因组(即通过进化基因组学 研究)找出进化过程中发生的遗传变异成为求解这一基本进化生物学问题的重 要方法。 通过比较不同物种的基因组可以发现新基因的诞生是在进化过程中普遍存 在的基本过程,对生物的进化发挥着重要的作用。大量前人的研究认为新基因 主要通过老基因的重复产生,新基因的从头起源很少发生或根本不存在。直至 最近在果蝇中发现了新基因从头起源事件才改变了人们的这种看法,然而这些 研究缺少功能的证据。我们通过比较酿酒酵母近缘种的基因组序列发现了酿酒 酵母中进化出的一个从头起源的新基因BSC4,并且提供了群体遗传学、转录 组、蛋白质组学和表型水平的证据支持这个基因的生物学功能和蛋白编码能 力。同时我们在其近缘种中发现其直系同源的非编码序列拥有RNA 水平的表达 活性,由此我们提出了一个蛋白基因从头起源的两步模型。我们认为一个非编 码DNA 序列进化为蛋白编码基因需要经历两个步骤:第一,DNA 序列先进化出 顺式元件来招募转录机器变成有RNA 转录活性的序列;第二,转录的序列通过 突变获得开放读码框并加入到翻译机器中。 进一步的分析提示BSC4 可能在酿 酒酵母转换到营养贫瘠的环境中并进入生长停滞期时对酿酒酵母的适应性作出 了贡献。酿酒酵母是一种对人类生活十分重要的微生物,它进行发酵的能力在 工业生产中具有重要应用价值。生长停滞期是酿酒酵母实际生产应用中频繁经 ii 历的过程,对这一阶段的适应性进化也对其工业应用有重要意义。 大熊猫是我国的国宝。它是一种具有独特特性的熊科动物,进化上属于食 肉目类群,食性确以竹子为主。为了适应其食性,其前掌的籽骨还发育出了著 名的“伪拇指”来帮助其进食。然而这些性状是如何进化出来的确一直是个未 解之谜。进化基因组学为解决这些问题提供了一个重要的思路和方法。我们通 过应用第二代测序技术对大熊猫基因组进行了从头测序和组装,通过和其它基 因组比较分析发现了大熊猫基因组中不存在编码降解纤维素酶的基因,提示了 大熊猫特殊食性的进化机制很可能是通过其肠道微生物的改变而发生的。同 时,我们也发现了大熊猫鲜味受体的退化,这很可能是一个伴随其食性进化而 发生的变异。 长雄野生稻是栽培稻的近缘种,它和栽培稻同属于AA 基因组。由于它具有 以发达的地下茎为生理表型的多年生特性和自交不亲和性,研究这些特性背后 的遗传机制对改良栽培稻一年生为多年生和构建自交不亲和的新杂交稻育种体 系有重要意义。我们从头测序并组装了长雄野生稻的基因组,通过和栽培稻基 因组的比较分析,在前人工作的基础上找出了决定上述两个重要性状的可能的 基因组区域,为进一步的实验验证提供了候选的基因。同时我们的序列提供了 对其它野生稻特性研究的重要基础。
Resumo:
Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemosensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantly with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.
Resumo:
P>Common carp (Cyprinus carpio) is an important fish for aquaculture, but genomics of this species is still in its infancy. In this study, a linkage map of common carp based on Amplified Fragment Length Polymorphism (AFLP) and microsatellite (SSR) markers has been generated using gynogenetic haploids. Of 926 markers genotyped, 151 (149 AFLPs, two SSRs) were distorted and eliminated from the linkage analyses. A total of 699 AFLP and 20 microsatellite (SSR) markers were assigned to the map, which comprised 64 linkage groups and covered 5506.9 cM Kosambi, with an average interval distance of 7.66 cM Kosambi. The normality tests on interval map distances showed a non-normal marker distribution. Visual inspection of the map distance distribution histogram showed a cluster of interval map distances on the left side of the chart, which suggested the occurrence of AFLP marker clusters. On the other hand, the lack of an obvious cluster on the right side showed that there were a few big gaps which need more markers to bridge. The correlation analysis showed a highly significant relatedness between the length of linkage group and the number of markers, indicating that the AFLP markers in this map were randomly distributed among different linkage groups. This study is helpful for research into the common carp genome and for further studies of genetics and marker-assisted breeding in this species.
Resumo:
Metabonomics, the study of metabolites and their roles in various disease states, is a novel methodology arising from the post-genomics era. This methodology has been applied in many fields, including work in cardiovascular research and drug toxicology. In this study, metabonomics method was employed to the diagnosis of Type 2 diabetes mellitus (DM2) based on serum lipid metabolites. The results suggested that serum fatty acid profiles determined by capillary gas chromatography combined with pattern recognition analysis of the data might provide an effective approach to the discrimination of Type 2 diabetic patients from healthy controls. And the applications of pattern recognition methods have improved the sensitivity and specificity greatly. (C) 2004 Elsevier B.V. All rights reserved.