821 resultados para focus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the inauguration of the Greater Mekong Sub-region (GMS) Economic Cooperation Program in 1992, road infrastructure projects have played a very important role. Their economic significance, especially, has become a focal point after the introduction of the concept of the three economic corridors in 1998: the East-West Economic Corridor; the North-South Economic Corridor; and the Southern Economic Corridor (Figure 1). The completion of the Second International Mekong Bridge between Mukdahan, Thailand and Savannakhet, Laos was an epoch-making event in the development of the East-West Economic Corridor. The business community, however, has paid more attention to the Bangkok-Hanoi Road than the East-West Economic Corridor. This study examines the reasons why the former has received more focus than the latter, by using criteria such as population density and the economic scale at a provincial or state level. Thereafter, the effectiveness of other economic corridors is examined, by applying the same criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to revealing the hidden link between products or consumption patterns of populations and their needs in terms of water resources, the water footprint (WF) indicator generates new debates and solutions on water management at basin scale. This paper analyses the green and blue WF of the Guadalquivir basin and its integration with environmental water consumption, with a special emphasis on the WF from groundwater and its consequences on current and future depletion of surface water. In a normal year, green WF (agriculture and pastures) amounts to 190 mm on a total green water consumption of 410 mm, while the blue WF (50 mm) represents half of the total blue water flows. This constitutes a first overview and alternative interpretations of the WF as human water appropriation are introduced. The blue WF is almost entirely associated to agriculture (40 mm). The presentation of its evolution over the period 1997?2008 reveals the rising WF from groundwater (13 mm in 2008), 86% being current consumption of surface flows. This evolution is particularly ascribed to the recent development of irrigated olive groves from groundwater. To prevent a higher pressure on the environment, this new use, like all others (thermo-solar plants, tourism, etc.), could have been obtained from the reallocation of water from crops with low water productivity. It means that water is not lacking in the Guadalquivir basin if the governance setting integrates more flexibility and equity in the allocation of water to address climatic variability and the emergence of new demands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supercritical Rankine power cycle offers a net improvement in plant efficiency compared with a subcritical Rankine cycle. For fossil power plants the minimum supercritical steam turbine size is about 450MW. A recent study between Sandia National Laboratories and Siemens Energy, Inc., published on March 2013, confirmed the feasibility of adapting the Siemens turbine SST-900 for supercritical steam in concentrated solar power plants, with a live steam conditions 230-260 bar and output range between 140-200 MWe. In this context, this analysis is focused on integrating a line-focus solar field with a supercritical Rankine power cycle. For this purpose two heat transfer fluids were assessed: direct steam generation and molten salt Hitec XL. To isolate solar field from high pressure supercritical water power cycle, an intermediate heat exchanger was installed between linear solar collectors and balance of plant. Due to receiver selective coating temperature limitations, turbine inlet temperature was fixed 550ºC. The design-point conditions were 550ºC and 260 bar at turbine inlet, and 165 MWe Gross power output. Plant performance was assessed at design-point in the supercritical power plant (between 43-45% net plant efficiency depending on balance of plantconfiguration), and in the subcritical plant configuration (~40% net plant efficiency). Regarding the balance of plant configuration, direct reheating was adopted as the optimum solution to avoid any intermediate heat exchanger. One direct reheating stage between high pressure turbine and intermediate pressure turbine is the common practice; however, General Electric ultrasupercritical(350 bar) fossil power plants also considered doubled-reheat applications. In this study were analyzed heat balances with single-reheat, double-reheat and even three reheating stages. In all cases were adopted the proper reheating solar field configurations to limit solar collectors pressure drops. As main conclusion, it was confirmed net plant efficiency improvements in supercritical Rankine line-focus (parabolic or linear Fresnel) solar plant configurations are mainly due to the following two reasons: higher number of feed-water preheaters (up to seven)delivering hotter water at solar field inlet, and two or even three direct reheating stages (550ºC reheating temperature) in high or intermediate pressure turbines. However, the turbine manufacturer should confirm the equipment constrains regarding reheating stages and number of steam extractions to feed-water heaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projections for world food production and prices play a crucial role to evaluate and tackle future food security challenges. Understanding how these projections will be affected by climate change is the main objective of this study. By means of a bio-economic approach we assess the economic impacts of climate change on agrifood markets, providing both a global analysis and a regionalised evaluation within the EU. To account for uncertainty, we analyse the IPCC emission scenario A1B for the 2030 horizon under several simulation scenarios that differ in (1) the climate projection, from HadleyCM3 (warm) or ECHAM5 (mild) global circulation models; and (2) the influence of CO2 effects. Results of this study indicate that agrifood market projections to 2030 are very sensitive to climate change uncertainties and, in particular to the magnitude of the carbon fertilization effect.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: