979 resultados para field crops
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cultivation of strawberry in plastic tunnels has increased considerably in Norway and in southeastern Brazil, mainly in an attempt to protect the crop from unsuitable climatic factors and some diseases as well as to allow growers to expand the traditional production season. It has been hypothesized that cultivation under tunnels could increase the incidence of one of its major pests in many countries where strawberry is cultivated, including Norway and Brazil, the two spotted spider mite, Tetranychus urticae. The objective of this study was to evaluate the effect of the use of tunnels on the incidence of T. urticae and on its natural enemies on strawberry in two ecologically contrasting regions, Norway (temperate) and southeastern Brazil (subtropical). In both countries, peak densities of T. urticae in tunnels and in the open fields were lower than economic thresholds reported in the literature. Factors determining that systematically seem to be the prevailing relatively low temperature in Norway and high relative humidity in both countries. The levels of occurrence in Norway and Brazil in 2010 were so low that regardless of any potential effect of the use of tunnel, no major differences were observed between the two cropping systems in relation to T. urticae densities. In 2009 in Norway and in 2011 in Brazil, increase in T. urticae population seemed to have been restrained mainly by rainfall in the open field and by predatory mites in the tunnels. Phytoseiids were the most numerous predatory mite group of natural occurrence on strawberry, and the prevalence was higher in Brazil, where the most abundant species on strawberry leaves were Neoseiulus anonymus and Phytoseiulus macropilis. In Norway, the most abundant naturally occurring phytoseiids on strawberry leaves were Typhlodromus (Anthoseius) rhenanus and Typhlodromus (Typhlodromus) pyri. Predatory mites were very rare in the litter samples collected in Norway. Infection rate of the pest by the fungus Neozygites floridana (Neozygitaceae) was low. The results of this work suggest that in Norway the use of tunnels might not affect the population densities of T. urticae on strawberry in years of lower temperatures. When temperature is not a limiting factor for the development of T. urticae in that country (apparently always the case in southern Brazil), strawberry cultivation in the tunnels may allow T. urticae to reach higher population levels than in open fields (because of the provided protection from the direct impact of rainfall), but natural enemies may prevent higher levels from being reached.
Resumo:
The Rose-ringed parakeet (Psittacula krameri [Scopdi]) has been reported (Roberts, 1974; Bashir, 1978; Beg, 1978; and DeGrazio, 1978) as a serious bird pest of maize, sunflower, rape seeds, and fruit crops, particularly citrus, mangoes, and guavas, in Pakistan. Estimated annual losses to maize grown for seed alone amount to about 97,000 tons, worth about Pak. Rs. 150 million or US $15 million (Roberts, 1978). Paradoxically, this handsome bright green parakeet is highly esteemed in the pet trade; and limited numbers are also marketed locally and sometimes exported to neighboring countries, particularly the Arab Gulf Emirates, as caged pets. Traditional control methods aimed at scaring or chasing birds from the crops, usually with noise-making devices, are costly; furthermore, they have largely been unsuccessful and time consuming because they require human patrolling before and after normal working hours. They provide at best only temporary relief. The aim of this study was to develop a new decoy trap based on the Modified Australian Crow Trap (MAC), which we propose to call the PAROTRAP, and to evaluate its effectiveness and potential in capturing live parakeets in the field as a possible solution to the parakeet problem, as well as promoting the economic exploitation of trapped parakeets for the pet trade. The study was undertaken during March and June 1979 as a part of the UNDP/FAO Project No. PAK/71/554, assisting Pakistan Vertebrate Pest Control Centre in developing and improving control techniques to prevent or reduce bird damage to important crops. Our earlier trials showed that parakeets could be induced to enter a conventionally designed MAC trap, and that after some time they learned how to escape from it. Therefore, a series of minor modifications were introduced and field tested.
Resumo:
The present study aimed to evaluate the interactions of the pesticide Vertimec (R) 18EC in aquatic ecosystems. In this respect, soil plots were contaminated with Vertimec (R) 18EC at the concentration indicated for strawberry crops (0.125 L of solution m(-2)). After the contamination, torrential rainfall was simulated and the surface runoff was collected and transferred to mesocosm tanks in five treatments, run in triplicate: (1) control-C; (2) runoff from an uncontaminated plot-UR; (3) runoff from the plot contaminated with Vertimec (R) 18EC-CR; (4) direct application of Vertimec (R) 18EC in the water-V and (5) water samples gathered randomly to verify whether there was contamination between the mesocosms-RS. Water samples from these tanks were also submitted to ecotoxicological tests with Daphnia similis and analyses to evaluate the limnological characteristics, in five collection periods over 10 days (240 h). Physical and chemical differences were observed in the water samples, mainly related to increased turbidity, suspended solids and nutrients (nitrogen and phosphate forms). Acute toxicity was observed for the direct application treatment for the entire experimental period, and in some periods for the CR treatment (from 48 h to 168 h). The results obtained suggest that the pesticide did not fully degrade during the study period (10 days) in the direct application treatment, demonstrating that the presence of other substances in the commercial formulation contribute to the maintenance of toxicity. This represents a potential risk for aquatic ecosystems in areas adjacent to where the chemical is applied. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Centrifugal spreaders dominate the application of solid materials in agriculture offering expressive operational field capacity and extended range of applied rates. Field tests for characterization of theirperformance are conducted without any physical obstacles (such as the presence of plants) during the parabolic trajectory of the falling particles of fertilizer to the soil. The purpose of this study was to comparatively evaluate the transverse distribution of solid fertilizers applied on cropped corn, soybeans and cotton. Evaluations of the spreaders were designed according to ASAE S341.3/99 Standard. Tests consisted in aligning side by side collectors in-between the cropped rows and weighting the material deposited. The results showed that transverse distribution of solid fertilizers applied over the cotton and corn crops is affected by the crop height, interfering directly on the effective width of the spreader application, which was not observedin the soybean crop, once the fertilizer application is done when the crop was still below the collector's height. The results suggest that evaluation of effective width of the spreaders application need to be done under real crop environment.
Resumo:
The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Biochar is the solid C-rich matrix obtained by pyrolysis of biomasses, currently promoted as a soil amendment with the aim to offset anthropogenic C emissions, while ameliorating soil properties and growth conditions. Benefits from biochar seem promising, although scientific understandings are beginning to be explored. In this project, I performed a suite of experiments in controlled and in field conditions with the aims to investigate the effect of biochar on: a) the interaction with minerals; b) Fe nutrition in kiwifruit; c) soil leaching, soil fertility, soil CO2 emissions partitioning, soil bacterial profile and key gene expression of soil nitrification-involved bacteria; d) plant growth, nutritional status, yield, fruit quality and e) its physical-chemical changes as affected by long-term environmental exposure. Biochar released K, P and Mg but retained Fe, Mn, Cu and Zn on its surface which in turn hindered Fe nutrition of kiwifruit trees. A redox reaction on the biochar surface exposed to a Fe source was elucidated. Biochar reduced the amount of leached NH4+-N but increased that of Hg, K, P, Mo, Se and Sn. Furthermore, biochar synergistically interacted with compost increasing soil field capacity, fertility, leaching of DOC, TDN and RSOC, suggesting a priming effect. However, in field conditions, biochar did not affect yield, nutritional status and fruit quality. Actinomadura flavalba, Saccharomonospora viridis, Thermosporomyces composti and Enterobacter spp. were peculiar of the soil amended with biochar plus compost which exhibited the highest band richness and promoted gene expression levels of Nitrosomonas spp., Nitrobacter spp. and enzymatic-related activity. Environmental exposure reduced C, K, pH and water infiltration of biochar which instead resulted in a higher O, Si, N, Na, Al, Ca, Mn and Fe at%. Oxidation occurred on the aged biochar surface, it decreased progressively with depth and induced the development of O-containing functional groups, up to 75nm depth.
Resumo:
In response to insect attack, plants release complex blends of volatile compounds. These volatiles serve as foraging cues for herbivores, predators and parasitoids, leading to plant-mediated interactions within and between trophic levels. Hence, plant volatiles may be important determinants of insect community composition. To test this, we created rice lines that are impaired in the emission of two major signals, S-linalool and (E)-β-caryophyllene. We found that inducible S-linalool attracted predators and parasitoids as well as chewing herbivores, but repelled the rice brown planthopper Nilaparvata lugens, a major pest. The constitutively produced (E)-β-caryophyllene on the other hand attracted both parasitoids and planthoppers, resulting in an increased herbivore load. Thus, silencing either signal resulted in specific insect assemblages in the field, highlighting the importance of plant volatiles in determining insect community structures. Moreover, the results imply that the manipulation of volatile emissions in crops has great potential for the control of pest populations.
Resumo:
The fall armyworm (FAW) is the most important threat to corn crops in Argentina, and there exists very little up-to-date information on its actual pest status because the available literature was published more than 20 years ago. Therefore, field surveys were carried out in the northeast of Argentina, in order to establish the attack rates and injury levels of the pest in relation to the crop phenology. The study was carried out at two localities: Colonia Benítez, an agricultural region, and Tapenagá, a cattle-raising area. At each site two 1-ha plots were sown either with a Bt-corn expressing Cry 1F protein or with an untransformed corn germplasm. Optimal and late sowing was assayed and FAW larval abundance, relative age composition, attack rates and level of damage to corn were recorded. At the moment of the field experiments, Bt-corn was not affected by FAW larvae. However, untransformed germplasms were severely affected by FAW larvae, with an average of attacked plants of 18% or more. In contrast to data obtained 30 years ago, higher values of FAW density were registered. Levels of damage to corn plants were higher after the V4 stage. It was found that the sowing date affected the infestation levels and early seeding avoided high armyworm densities that develop later in the season; in northern Argentina, this was only relevant in agricultural areas.
Resumo:
Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research.
Resumo:
This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird’s-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight
Resumo:
El Zn es un elemento esencial para el crecimiento saludable y reproducción de plantas, animales y humanos. La deficiencia de Zn es una de las carencias de micronutrientes más extendidas en muchos cultivos, afectando a grandes extensiones de suelos en diferentes áreas agrícolas. La biofortificación agronómica de diferentes cultivos, incrementando la concentración de micronutriente Zn en la planta, es un medio para evitar la deficiencia de Zn en animales y humanos. Tradicionalmente se han utilizado fertilizantes de Zn inorgánicos, como el ZnSO4, aunque en los últimos años se están utilizado complejos de Zn como fuentes de este micronutriente, obteniéndose altas concentraciones de Zn soluble y disponible en el suelo. Sin embargo, el envejecimiento de la fuente en el suelo puede causar cambios importantes en su disponibilidad para las plantas. Cuando se añaden al suelo fuentes de Zn inorgánicas, las formas de Zn más solubles pierden actividad y extractabilidad con el paso del tiempo, transformándose a formas más estables y menos biodisponibles. En esta tesis se estudia el efecto residual de diferentes complejos de Zn de origen natural y sintético, aplicados en cultivos previos de judía y lino, bajo dos condiciones de riego distintas (por encima y por debajo de la capacidad de campo, respectivamente) y en dos suelos diferentes (ácido y calizo). Los fertilizantes fueron aplicados al cultivo previo en tres dosis diferentes (0, 5 y 10 mg Zn kg-1 suelo). El Zn fácilmente lixiviable se estimó con la extracción con BaCl2 0,1M. Bajo condiciones de humedad por encima de la capacidad de campo se obtuvieron mayores porcentajes de Zn lixiviado en el suelo calizo que en el suelo ácido. En el caso del cultivo de judía realizado en condiciones de humedad por encima de la capacidad de campo se compararon las cantidades extraídas con el Zn lixiviado real. El análisis de correlación entre el Zn fácilmente lixiviable y el estimado sólo fue válido para complejos con alta movilidad y para cada suelo por separado. Bajo condiciones de humedad por debajo de la capacidad de campo, la concentración de Zn biodisponible fácilmente lixiviable presentó correlaciones positivas y altamente significativas con la concentración de Zn disponible en el suelo. El Zn disponible se estimó con varios métodos de extracción empleados habitualmente: DTPA-TEA, DTPA-AB, Mehlich-3 y LMWOAs. Estas concentraciones fueron mayores en el suelo ácido que en el calizo. Los diferentes métodos utilizados para estimar el Zn disponible presentaron correlaciones positivas y altamente significativas entre sí. La distribución del Zn en las distintas fracciones del suelo fue estimada con diferentes extracciones secuenciales. Las extracciones secuenciales mostraron un descenso entre los dos cultivos (el anterior y el actual) en la fracción de Zn más lábil y un aumento en la concentración de Zn asociado a fracciones menos lábiles, como carbonatos, óxidos y materia orgánica. Se obtuvieron correlaciones positivas y altamente significativas entre las concentraciones de Zn asociado a las fracciones más lábiles (WSEX y WS+EXC, experimento de la judía y lino, respectivamente) y las concentraciones de Zn disponible, estimadas por los diferentes métodos. Con respecto a la planta se determinaron el rendimiento en materia seca y la concentración de Zn en planta. Se observó un aumento del rendimiento y concentraciones con el efecto residual de la dosis mayores (10 mg Zn kg-1) con respecto a la dosis inferior (5 mg Zn 12 kg-1) y de ésta con respecto a la dosis 0 (control). El incremento de la concentración de Zn en todos los tratamientos fertilizantes, respecto al control, fue mayor en el suelo ácido que en el calizo. Las concentraciones de Zn en planta indicaron que, en el suelo calizo, serían convenientes nuevas aplicaciones de Zn en posteriores cultivos para mantener unas adecuadas concentraciones en planta. Las mayores concentraciones de Zn en la planta de judía, cultivada bajo condiciones de humedad por encima de la capacidad de campo, se obtuvieron en el suelo ácido con el efecto residual del Zn-HEDTA a la dosis de 10 mg Zn kg-1 (280,87 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-DTPA-HEDTA-EDTA a la dosis de 10 mg Zn kg-1 (49,89 mg Zn kg-1). En el cultivo de lino, cultivado bajo condiciones de humedad por debajo de la capacidad de campo, las mayores concentraciones de Zn en planta ese obtuvieron con el efecto residual del Zn-AML a la dosis de 10 mg Zn kg-1 (224,75 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-EDTA a la dosis de 10 mg Zn kg-1 (99,83 mg Zn kg-1). El Zn tomado por la planta fue determinado como combinación del rendimiento y de la concentración en planta. Bajo condiciones de humedad por encima de capacidad de campo, con lixiviación, el Zn tomado por la judía disminuyó en el cultivo actual con respecto al cultivo anterior. Sin embargo, en el cultivo de lino, bajo condiciones de humedad por debajo de la capacidad de campo, se obtuvieron cantidades de Zn tomado superiores en el cultivo actual con respecto al anterior. Esta tendencia también se observó, en ambos casos, con el porcentaje de Zn usado por la planta. Summary Zinc is essential for healthy growth and reproduction of plants, animals and humans. Zinc deficiency is one of the most widespread micronutrient deficiency in different crops, and affect different agricultural areas. Agronomic biofortification of crops produced by an increased of Zn in plant, is one way to avoid Zn deficiency in animals and humans Sources with inorganic Zn, such as ZnSO4, have been used traditionally. Although, in recent years, Zn complexes are used as sources of this micronutrient, the provide high concentrations of soluble and available Zn in soil. However, the aging of the source in the soil could cause significant changes in their availability to plants. When an inorganic source of Zn is added to soil, Zn forms more soluble and extractability lose activity over time, transforming into forms more stable and less bioavailable. This study examines the residual effect of different natural and synthetic Zn complexes on navy bean and flax crops, under two different moisture conditions (above and below field capacity, respectively) and in two different soils (acid and calcareous). Fertilizers were applied to the previous crop in three different doses (0, 5 y 10 mg Zn kg-1 soil). The easily leachable Zn was estimated by extraction with 0.1 M BaCl2. Under conditions of moisture above field capacity, the percentage of leachable Zn in the calcareous soil was higher than in acid soil. In the case of navy bean experiment, performed in moisture conditions of above field capacity, amounts extracted of easily leachable Zn were compared with the real leachable Zn. Correlation analysis between the leachable Zn and the estimate was only valid for complex with high mobility and for each soil separately. Under moisture conditions below field capacity, the concentration of bioavailable easily leachable Zn showed highly significant positive correlations with the concentration of available soil Zn. The available Zn was estimated with several commonly used extraction methods: DTPA-TEA, AB-DTPA, Mehlich-3 and LMWOAs. These concentrations were higher in acidic soil than in the calcareous. The different methods used to estimate the available Zn showed highly significant positive correlations with each other. The distribution of Zn in the different fractions of soil was estimated with different sequential extractions. The sequential extractions showed a decrease between the two crops (the previous and current) at the most labile Zn fraction and an increase in the concentration of Zn associated with the less labile fractions, such as carbonates, oxides and organic matter. A positive and highly significant correlation was obtained between the concentrations of Zn associated with more labile fractions (WSEX and WS + EXC, navy bean and flax experiments, respectively) and available Zn concentrations determined by the different methods. Dry matter yield and Zn concentration in plants were determined in plant. Yield and Zn concentration in plant were higher with the residual concentrations of the higher dose applied (10 mg Zn kg-1) than with the lower dose (5 mg Zn kg-1), also these parameters showed higher values with application of this dose than with not Zn application. The increase of Zn concentration in plant with Zn treatments, respect to the control, was greater in the acid soil than in the calcareous. The Zn concentrations in plant indicated that in the calcareous soil, new applications of Zn are desirable in subsequent crops to maintain suitable concentrations in plant. 15 The highest concentrations of Zn in navy bean plant, performed under moisture conditions above the field capacity, were obtained with the residual effect of Zn-HEDTA at the dose of 10 mg Zn kg-1 (280.87 mg Zn kg-1) in the acid soil, and with the residual effect of Zn- DTPA-HEDTA-EDTA at a dose of 10 mg Zn kg-1 (49.89 mg Zn kg-1) in the calcareous soil. In the flax crop, performed under moisture conditions below field capacity, the highest Zn concentrations in plant were obtained with the residual effect of Zn-AML at the dose of 10 mg Zn kg-1 (224.75 Zn mg kg-1) and with the residual effect of Zn-EDTA at a dose of 10 mg Zn kg-1 (99.83 mg Zn kg-1) in the calcareous soil. The Zn uptake was determined as a combination of yield and Zn concentration in plant. Under moisture conditions above field capacity, with leaching, Zn uptake by navy bean decreased in the current crop, respect to the previous crop. However, in the flax crop, under moisture conditions below field capacity, Zn uptake was higher in the current crop than in the previous. This trend is also observed in both cases, with the percentage of Zn used by the plant
Resumo:
In sustainable intensive agriculture, the biodiversity of monoculture fields can be increased by managing the field margins to provide ecological infrastructures that serve as refuges and resources for beneficial organisms (pollinators and natural enemies). In the present work we summarize two years of field trials following the goal to increase biodiversity of beneficial fauna in a barley field in Central Spain by sowing different herbaceous mixtures in the field margins. The presence of arthropods visiting flowers on plots sown with different types of seed mixtures and unsown natural flora (control plot) was compared by visual sampling every week between April and June. The results showed that a combination of herbaceous big-size seeds was the most successful mixture emerging under our experimental conditions and achieved a higher number of visits of beneficial arthropods than the unsown natural vegetation.
Resumo:
Nitrate leaching decreases crop available N and increases water contamination. Replacing fallow by cover crops (CC) is an alternative to reduce nitrate contamination, because it reduces overall drainage and soil mineral N accumulation. A study of the soil N and nitrate leaching was conducted during 5 years in a semi-arid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.), and fallow. Cover crops, sown in October, were killed by glyphosate application in March, allowing direct seeding of maize in April. All treatments were irrigated and fertilised following the same procedure. Soil water content was measured using capacity probes. Soil Nmin accumulation was determined along the soil profile before sowing and after harvesting maize. Soil analysis was conducted at six depths every 0.20m in each plot in samples from 0 to 1.2-m depth. The mechanistic water balance model WAVE was applied in order to calculate drainage and plant growth of the different treatments, and apply them to the N balance. We evaluated the water balance of this model using the daily soil water content measurements of this field trial. A new Matlab version of the model was evaluated as well. In this new version improvements were made in the solute transport module and crop module. In addition, this new version is more compatible with external modules for data processing, inverse calibration and uncertainty analysis than the previous Fortran version. The model showed that drainage during the irrigated period was minimized in all treatments, because irrigation water was adjusted to crop needs, leading to nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of the nitrate leaching occurred. Cover crops usually led to a shorter drainage period, lower drainage water amount and lower nitrate leaching than the treatment with fallow. These effects resulted in larger nitrate accumulation in the upper layers of the soil after CC treatments.
Resumo:
Introducing cover crops (CC) interspersed with intensively fertilized crops in rotation has the potential to reduce nitrate leaching. This paper evaluates various strategies involving CC between maize and compares the economic and environmental results with respect to a typical maize?fallow rotation. The comparison is performed through stochastic (Monte-Carlo) simulation models of farms? profits using probability distribution functions (pdfs) of yield and N fertilizer saving fitted with data collected from various field trials and pdfs of crop prices and the cost of fertilizer fitted from statistical sources. Stochastic dominance relationships are obtained to rank the most profitable strategies from a farm financial perspective. A two-criterion comparison scheme is proposed to rank alternative strategies based on farm profit and nitrate leaching levels, taking the baseline scenario as the maize?fallow rotation. The results show that when CC biomass is sold as forage instead of keeping it in the soil, greater profit and less leaching of nitrates are achieved than in the baseline scenario. While the fertilizer saving will be lower if CC is sold than if it is kept in the soil, the revenue obtained from the sale of the CC compensates for the reduced fertilizer savings. The results show that CC would perhaps provide a double dividend of greater profit and reduced nitrate leaching in intensive irrigated cropping systems in Mediterranean regions.