911 resultados para fetal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in human prenatal medicine and molecular genetics have allowed the diagnosis of many genetic diseases early in gestation. In-utero transplantation of allogeneic hematopoietic stem cells (HSC) has been successfully used as a therapy in different animal models and recently also in human fetuses. Unfortunately, clinical success of this novel treatment is limited by the lack of donor cell engraftment in non-immunocompromised hosts and is thus restricted to diseases where the fetus is affected by severe immunodeficiency. Gene therapy using genetically modified autologous HSC circumvents allogeneic HLA barriers and constitutes one of the most promising new approaches to correct genetic deficits in the fetus. Recent developments of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells include the use of new vector constructs and transduction protocols. These improvements open new perspectives for gene therapy in general and for prenatal gene transfer in particular. The fetus may be especially susceptible for successful gene therapy due to the immunologic naiveté of the immature hematopoietic system during gestation, precluding an immune reaction towards the transgene. Ethical issues, in particular those regarding treatment safety, must be taken into account before clinical trials with fetal gene therapy in human pregnancies can be initiated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: In fetal ultrasound imaging, teaching and experience are of paramount importance to improve prenatal detection rates of fetal abnormalities. Yet both aspects depend on exposure to normal and, in particular, abnormal 'specimens'. We aimed to generate a number of simple virtual reality (VR) objects of the fetal central nervous system for use as educational tools. METHODS: We applied a recently proposed algorithm for the generation of fetal VR object movies to the normal and abnormal fetal brain and spine. Interactive VR object movies were generated from ultrasound volume data from normal fetuses and fetuses with typical brain or spine anomalies. Pathognomonic still images from all object movies were selected and annotated to enable recognition of these features in the object movies. RESULTS: Forty-six virtual reality object movies from 22 fetuses (two with normal and 20 with abnormal brains) were generated in an interactive display format (QuickTime) and key images were annotated. The resulting .mov files are available for download from the website of this journal. CONCLUSIONS: VR object movies can be generated from educational ultrasound volume datasets, and may prove useful for teaching and learning normal and abnormal fetal anatomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To study the expression and the function of the 11beta-hydroxysteroid dehydrogenase enzyme 1 (11beta-HSD1) and 2 (11beta-HSD2) in placenta and the fetal membranes from pregnancies with intrauterine growth restriction (IUGR) and from controls. METHODS: Amnion, chorion, decidua and cotyledon were separated from placenta; mRNA was analyzed by TaqMan real-time technology and proteins by Western blot; enzyme activities were measured by the conversion of 3H-cortisol to 3H-cortisone and vice versa. RESULTS: Predominant mRNA expression (p < 0.001) was found for 11beta-HSD1 in chorion and for 11beta-HSD2 in decidua and cotyledon. In pregnancies with IUGR, 11beta-HSD1 was upregulated in chorion (mean DeltaCt 11beta-HSD:18S mRNA 193.5 vs. 103.0 in controls respectively, p < 0.05) and 11beta-HSD2 was downregulated in decidua (mean DeltaCt 11beta-HSD2:18S mRNA 0.18 vs. 15.88 in controls respectively, p < 0.05). 11beta-HSD1 protein levels were reduced in amnion and 11beta-HSD1 and 11beta-HSD2 oxidase activity in decidua and cotyledon were reduced from pregnancies with IUGR. CONCLUSION: Reduced synthesis or activity of 11beta-HSD1 or 2 in cases of IUGR is shown in some but not in all tissues. The local mRNA expression of 11beta-HSD1 in chorion may reflect a mechanism on the post-transcriptional gene regulation to stimulate the formation of cortisone in IUGR. To provoke increasing activity with oxidase stimulators could be a future therapy in cases of IUGR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-floating roller tube cultures of human fetal (embryonic age 6-10 weeks post-conception) and rat fetal (embryonic day 13) ventral mesencephalon were prepared. After 7-15 days in vitro, the mesencephalic tissue cultures were transplanted into the striatum of adult rats that had received unilateral injections of 6-hydroxydopamine into the nigrostriatal bundle 3-5 weeks prior to transplantation. Graft survival was assessed in tyrosine hydroxylase (TH)-immunostained serial sections of the grafted brains up to post-transplantation week 4 for the human fetal xenografts and post-transplantation week 11 for the rat fetal allografts. D-amphetamine-induced rotation was monitored up to 10 weeks after transplantation in the allografted animals and compared with that of lesioned-only control animals. All transplanted animals showed large, viable grafts containing TH-immunoreactive (ir) neurons. The density of TH-ir neurons in the human fetal xenografts and in rat fetal allografts was similar. A significant amelioration of the amphetamine-induced rotation was observed in the animals that received cultured tissue allografts. These results promote the feasibility of in vitro maintenance of fetal human and rat nigral tissue prior to transplantation using the free-floating roller tube technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth- and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopamine-lesioned rats. While all groups of rats showed a significant reduction in d-amphetamine-induced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remarkable advances in ultrasound imaging technology have made it possible to diagnose fetal cardiovascular lesions as early as 12-14 weeks of gestation and to assess their physiological relevance by echocardiography. Moreover, invasive techniques have been developed and refined to relieve significant congenital heart disease (CHD), such as critical aortic and pulmonary stenoses in the pediatric population including neonates. Recognition of the fact that certain CHDs can evolve in utero, and early intervention may improve the outcome by altering the natural history of such conditions has led to the evolution of a new fetal therapy, i.e. fetal cardiac intervention. Two entities, pulmonary valvar atresia and intact ventricular septum (PA/IVS) and hypoplastic left heart syndrome (HLHS), are associated with significant morbidity and mortality even with postnatal surgical therapy. These cases are believed to occur due to restricted blood flow, leading to impaired growth and function of the right or left ventricle. Therefore, several centers started the approach of antenatal intervention with the primary goal of improving the blood flow through the stenotic/atretic valve orifices to allow growth of cardiac structures. Even though centers with a reasonable number of cases seem to have improved the technique and the immediate outcome of fetal interventions, the field is challenged by ethical issues as the intervention puts both the mother and the fetus at risk. Moreover, the perceived benefits of prenatal treatment have to be weighed against steadily improving postnatal surgical and hybrid procedures, which have been shown to reduce morbidity and mortality for these complex heart defects. This review is an attempt to provide a balanced opinion and an update on fetal cardiac intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enforced expression of Tbx1 in fetal thymic epithelial cells antagonizes thymus organogenesis Kim T. Cardenas The thymus and parathyroid glands originate from organ-specific domains of 3rd pharyngeal pouch (PP) endoderm. At embryonic day 11.5 (E11.5), the ventral thymus and dorsal parathyroid domains can be identified by Foxn1 and Gcm2 expression respectively. Neural crest cells, (NCCs) play a role in regulating patterning of 3rd PP endoderm. In addition, pharyngeal endoderm influences fate determination via secretion of Sonic hedgehog (Shh), a morphogen required for Gcm2 expression and generation of the parathyroid domain. Gcm2 is a downstream target of the transcription factor Tbx1, which in turn is positively regulated by Shh. Although initially expressed throughout pharyngeal pouch endoderm, Tbx1 expression is excluded from the thymus-specific domain of the 3rd PP by E10.5, but persists in the parathyroid domain. Based on these observations, we hypothesized that Tbx1 expression is non-permissive for thymus fate specification and that enforced expression of Tbx1 in the fetal thymus would impair thymus development. To test this hypothesis, we generated knock-in mice containing a Cre-inducible allele that allows for tissue-specific Tbx1 expression. Expression of the R26iTbx1 allele in fetal and adult thymus using Foxn1Cre resulted in severe thymus hypoplasia throughout ontogeny that persisted in the adult. Thymic epithelial cell (TEC) development was impaired as determined by immunohistochemical and FACS analysis of various differentiation markers. The relative level of Foxn1 expression in fetal TECs was significantly reduced. TECs in R26iTbx1/+ thymi assumed an almost universal expression of Plet-1, a marker associated with a TEC stem/progenitor cell fate. In addition, embryonic R26iTbx1/+ mice develop a perithymic mesechymal capsule that appears expanded compared to control littermates. Interestingly, thymi from neonatal and adult R26iTbx1/+ but not R26+/+ mice were encased in adipose tissue. This thymic phenotype also correlated with a decrease in thymocyte cellularity and aberrant thymocyte differentiation. The results to date support the conclusion that enforced expression of Tbx1 in TECs antagonizes their differentiation and prevents normal organogenesis via both direct and indirect effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tenascin-C (TNC) is a multidomain extracellular matrix protein that contributes to organogenesis and tumorgenesis. To elucidate its developmental function in the context of TNC deficiency, lung lobes of TNC null mice were obtained at Embryonic Days E11.5 and E12.5 and cultured for 3 d. In lung explants of homozygote TNC-deficient embryos (E12.5) the number of future airway branches was reduced by 36% as compared with wild-type. In heterozygote explants only half of the reduction (18%) was observed. No significant alteration, neither of the explant growth nor of the pattern of airway branching, was noticed in TNC-null explants. However, the terminal endbuds of the transgenic explants were enlarged. The results are supported by a morphologic investigation at Postnatal Day P2, where the airspaces of TNC-deficient lungs appeared larger than in wild-type lungs. Taken together, our results represent the first developmental phenotype of TNC-null mice. We conclude that TNC takes part in the control of fetal lung branching, and that not only the presence of TNC but also its amount is important. Because TNC is predominantly expressed at the growing tip of the future airways, we hypothesize that TNC promotes the penetration into the surrounding mesenchyme and the branching of the growing airways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous contractions of the fetal airways are a well recognized but poorly characterized phenomenon. In the present study spontaneous narrowing of the airways was analyzed in freshly isolated lungs from early to late gestation in fetal pigs and rabbits and in cultured fetal mouse lungs. Propagating waves of contraction traveling proximal to distal were observed in fresh lungs throughout gestation which displaced the lung liquid along the lumen. In the pseudoglandular and canalicular stages (fetal pigs) the frequency ranged from 2.3 to 3.3 contractions/min with a 39 to 46% maximum reduction of lumen diameter. In the saccular stage (rabbit) the frequency was 10 to 12/min with a narrowing of approximately 30%. In the organ cultures the waves of narrowing started at the trachea in whole lungs, or at the main bronchus in lobes (5.2 +/- 1.5 contractions/min, 22 +/- 8% reduction of lumen diameter), and as they proceeded distally along the epithelial tubes the luminal liquid was shifted toward the terminal tubules, which expanded the endbuds. As the tubules relaxed the flow of liquid was reversed. Thus the behavior of airway smooth muscle in the fetal lung is phasic in type (like gastrointestinal muscle) in contrast to that in postnatal lung, where it is tonic. An intraluminal positive pressure of 2.33 +/- 0.77 cm H(2)O was recorded in rabbit fetal trachea. It is proposed that the active tone of the smooth muscle maintains the positive intraluminal pressure and acts as a stimulus to lung growth via the force exerted across the airway wall and adjacent parenchyma. The expansion of the compliant endbuds by the fluid shifts at the airway tip may promote their growth into the surrounding mesenchyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 7-year-old boy was presented with a long-standing slowly growing mass of the left supraorbital area. A biopsy specimen revealed a bland spindle cell proliferation with scattered polygonal cells with acidophilic cytoplasm and cross-striations. Our differential diagnosis included rhabdomyoma of fetal type, leiomyoma with trapping of regenerating skeletal muscle elements, and rhabdomyomatous mesenchymal hamartoma of the skin. Immunohistochemistry demonstrated strong positivity of myoglobin and desmin as well as negativity of caldesmon, suggesting skeletal muscle lineage. The excisional specimen confirmed our diagnosis of cutaneous fetal rhabdomyoma of intermediate type. Additional immunostaining performed on the excisional specimen showed strong Wilms Tumor 1 but only a very faint and focal p63 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MATERNO-FETAL NUTRIENT TRANSFER ACROSS PRIMARY HUMAN TROPHOBLAST MONOLAYER Objectives: Polarized trophoblasts represent the transport and metabolic barrier between the maternal and fetal circulation. Currently human placental nutrient transfer in vitro is mainly investigated unidirectionallyon cultured primary trophoblasts, or bidirectionally on the Transwell® system using BeWo cells treated with forskolin. As forskolin can induce various gene alterations (e.g. cAMP response element genes), we aimed to establish a physiological primary trophoblast model for materno-fetal nutrient exchange studies without forskolin application. Methods: Human term cytotrophoblasts were isolated by enzymatic digestion and Percoll® gradient separation. The purity of the primary cells was assessed by flow cytometry using the trophoblast-specific marker cytokeratin-7. After screening different coating matrices, we optimized the growth conditions for the primary cytotrophoblasts on Transwell/ inserts. The morphology of 5 days cultured trophoblasts was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally transport studies were performed on the polarized trophoblasts in the Transwell® system. Results: During 5 days culture, the trophoblasts (>90% purity) developed a modest trans-epithelial electrical resistance (TEER) and a sizedependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ~400-70’000D). SEM analyses confirmed a confluent trophoblast layer with numerous microvilli at day six, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein ZO-1, and the membrane proteins ABCA1 and Na+/K+-ATPase. Vectorial glucose and cholesterol transport studies confirmed functionality of the cultured trophoblast barrier. Conclusion: Evidence from cell morphology, biophysical parameters and cell marker expressions indicate the successful and reproducible establishment of a primary trophoblast monolayer model suitable for transport studies. Application of this model to pathological trophoblasts will help to better understand the mechanism underlying gestational diseases, and to define the consequences of placental pathology on materno-fetal nutrient transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Fetal weight estimation (FWE) is an important factor for clinical management decisions, especially in imminent preterm birth at the limit of viability between 23(0/7) and 26(0/7) weeks of gestation. It is crucial to detect and eliminate factors that have a negative impact on the accuracy of FWE. DATA SOURCES In this systematic literature review, we investigated 14 factors that may influence the accuracy of FWE, in particular in preterm neonates born at the limit of viability. RESULTS We found that gestational age, maternal body mass index, amniotic fluid index and ruptured membranes, presentation of the fetus, location of the placenta and the presence of multiple fetuses do not seem to have an impact on FWE accuracy. The influence of the examiner's grade of experience and that of fetal gender were discussed controversially. Fetal weight, time interval between estimation and delivery and the use of different formulas seem to have an evident effect on FWE accuracy. No results were obtained on the impact of active labor. DISCUSSION This review reveals that only few studies investigated factors possibly influencing the accuracy of FWE in preterm neonates at the limit of viability. Further research in this specific age group on potential confounding factors is needed.