960 resultados para feature detection
Resumo:
Faz-se nesta dissertação a análise do movimento humano utilizando sinais de ultrassons refletidos pelos diversos membros do corpo humano, designados por assinaturas de ultrassons. Estas assinaturas são confrontadas com os sinais gerados pelo contato dos membros inferiores do ser humano com o chão, recolhidos de forma passiva. O método seguido teve por base o estudo das assinaturas de Doppler e micro-Doppler. Estas assinaturas são obtidas através do processamento dos ecos de ultrassons recolhidos, com recurso à Short-Time Fourier Transform e apresentadas sobre a forma de espectrograma, onde se podem identificar os desvios de frequência causados pelo movimento das diferentes partes do corpo humano. É proposto um algoritmo inovador que, embora possua algumas limitações, é capaz de isolar e extrair de forma automática algumas das curvas e parâmetros característicos dos membros envolvidos no movimento humano. O algoritmo desenvolvido consegue analisar as assinaturas de micro-Doppler do movimento humano, estimando diversos parâmetros tais como o número de passadas realizadas, a cadência da passada, o comprimento da passada, a velocidade a que o ser humano se desloca e a distância percorrida. Por forma a desenvolver, no futuro, um classificador capaz de distinguir entre humanos e outros animais, são também recolhidas e analisadas assinaturas de ultrassons refletidas por dois animais quadrúpedes, um canino e um equídeo. São ainda estudadas as principais características que permitem classificar o tipo de animal que originou a assinatura de ultrassons. Com este estudo mostra-se ser possível a análise de movimento humano por ultrassons, havendo características nas assinaturas recolhidas que permitem a classificação do movimento como humano ou não humano. Do trabalho desenvolvido resultou ainda uma base de dados de assinaturas de ultrassons de humanos e animais que permitirá suportar trabalho de investigação e desenvolvimento futuro.
Resumo:
The transducer consists of a semiconductor device based on two stacked -i-n heterostructures that were designed to detect the emissions of the fluorescence resonance energy transfer between fluorophores in the cyan (470 nm) and yellow (588 nm) range of the spectrum. This research represents a preliminary study on the use of such wavelength-sensitive devices as photodetectors for this kind of application. The device was characterized through optoelectronic measurements concerning spectral response measurements under different electrical and optical biasing conditions. To simulate the fluorescence resonance energy transfer (FRET) pairs, a chromatic time-dependent combination of cyan and yellow wavelengths was applied to the device. The generated photocurrent was measured under reverse and forward bias to read out the output photocurrent signal. A different wavelength-biasing light was also superimposed. Results show that under reverse bias, the photocurrent signal presents four separate levels, each one assigned to the different wavelength combinations of the FRET pairs. If a blue background is superimposed, the yellow channel is enhanced and the cyan suppressed, while under red irradiation, the opposite behavior occurs. So, under suitable biasing light, the transducer is able to detect separately the cyan and yellow fluorescence pairs. An electrical model, supported by a numerical simulation, supports the transduction mechanism of the device.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Mestrado em Engenharia Química
Resumo:
Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Resumo:
Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies ( MUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, MUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on MUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.
Resumo:
Bacterial food poisoning is an ever-present threat that can be prevented with proper care and handling of food products. A disposable electrochemical immunosensor for the simultaneous measurements of common food pathogenic bacteria namely Escherichia coli O157:H7 (E. coli), campylobacter and salmonella were developed. The immunosensor was fabricated by immobilizing the mixture of anti-E. coli, anticampylobacter and anti-salmonella antibodies with a ratio of 1:1:1 on the surface of the multiwall carbon nanotube-polyallylamine modified screen printed electrode (MWCNT-PAH/SPE). Bacteria suspension became attached to the immobilized antibodies when the immunosensor was incubated in liquid samples. The sandwich immunoassay was performed with three antibodies conjugated with specific nanocrystal ( -E. coli-CdS, -campylobacter-PbS and -salmonella-CuS) which has releasable metal ions for electrochemical measurements. The square wave anodic stripping voltammetry (SWASV) was employed to measure released metal ions from bound antibody nanocrystal conjugates. The calibration curves for three selected bacteria were found in the range of 1 × 103 – 5 × 105 cells mL−1 with the limit of detection (LOD) 400 cells mL−1 for salmonella, 400 cells mL−1 for campylobacter and 800 cells mL−1 for E. coli. The precision and sensitivity of this method show the feasibility of multiplexed determination of bacteria in milk samples.
Resumo:
It is presented in this paper a study on the photo-electronic properties of multi layer a-Si: H/a-SiC: H p-i-n-i-p structures. This study is aimed to give an insight into the internal electrical characteristics of such a structure in thermal equilibrium, under applied Was and under different illumination condition. Taking advantage of this insight it is possible to establish a relation among-the electrical behavior of the structure the structure geometry (i.e. thickness of the light absorbing intrinsic layers and of the internal n-layer) and the composition of the layers (i.e. optical bandgap controlled through percentage of carbon dilution in the a-Si1-xCx: H layers). Showing an optical gain for low incident light power controllable by means of externally applied bias or structure composition, these structures are quite attractive for photo-sensing device applications, like color sensors and large area color image detector. An analysis based on numerical ASCA simulations is presented for describing the behavior of different configurations of the device and compared with experimental measurements (spectral response and current-voltage characteristic). (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Informática
Resumo:
The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.
Resumo:
The development of a FIA system for the determination of total choline content in several types of milk is described. The samples were submitted to hydrochloric acid digestion before injection into the system and passed through an enzymatic reactor containing choline oxidase immobilised on glass beads. This enzymatic reaction releases hydrogen peroxide which then reacts with a solution of iodide. The decrease in the concentration of iodide ion is quantified using an iodide ion selective tubular electrode based on a homogeneous crystalline membrane. Validation of the results obtained with this system was performed by comparison with results from a method described in the literature and applied to the determination of total choline in milks. The relative deviation was always < 5%. The repeatability of the method developed was assessed by calculation of the relative standard deviation (RSD) for 12 consecutive injections of one sample. The RSD obtained was < 0.6%.
Resumo:
The deterioration of water quality by Cyanobacteria cause outbreaks and epidemics associated with harmful diseases in Humans and animals because of the toxins that they release. Microcystin-LR is one of the hepatotoxins most widely studied and the World Health Organization, recommend a maximum value of 1mgL 1 in drinking water. Highly specific recognition molecules, such as molecular imprinted polymers are developed to quantify microcystins in waters for human use and shown to be of great potential in the analysis of these kinds of samples. The obtained results were auspicious, the detection limit found, 1.5mgL 1, being of the same order of magnitude as the guideline limit recommended by the WHO. This technology is very promising because the sensors are stable and specific, and the technology is inexpensive and allows for rapid on-site monitoring.