998 resultados para excitation processes
Resumo:
Existing business process drift detection methods do not work with event streams. As such, they are designed to detect inter-trace drifts only, i.e. drifts that occur between complete process executions (traces), as recorded in event logs. However, process drift may also occur during the execution of a process, and may impact ongoing executions. Existing methods either do not detect such intra-trace drifts, or detect them with a long delay. Moreover, they do not perform well with unpredictable processes, i.e. processes whose logs exhibit a high number of distinct executions to the total number of executions. We address these two issues by proposing a fully automated and scalable method for online detection of process drift from event streams. We perform statistical tests over distributions of behavioral relations between events, as observed in two adjacent windows of adaptive size, sliding along with the stream. An extensive evaluation on synthetic and real-life logs shows that our method is fast and accurate in the detection of typical change patterns, and performs significantly better than the state of the art.
Resumo:
Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.
Resumo:
We study the process of electronic excitation energy transfer from a fluorophore to the electronic energy levels of a single-walled carbon nanotube. The matrix element for the energy transfer involves the Coulombic interaction between the transition densities on the donor and the acceptor. In the Foumlrster approach, this is approximated as the interaction between the corresponding transition dipoles. For energy transfer from a dye to a nanotube, one can use the dipole approximation for the dye, but not for the nanotube. We have therefore calculated the rate using an approach that avoids the dipole approximation for the nanotube. We find that for the metallic nanotubes, the rate has an exponential dependence if the energy that is to be transferred, h is less than a threshold and a d(-5) dependence otherwise. The threshold is the minimum energy required for a transition other than the k(i,perpendicular to)=0 and l=0 transition. Our numerical evaluation of the rate of energy transfer from the dye pyrene to a (5,5) carbon nanotube, which is metallic leads to a distance of similar to 165 A degrees up to which energy transfer is appreciable. For the case of transfer to semiconducting carbon nanotubes, apart from the process of transfer to the electronic energy levels within the one electron picture, we also consider the possibility of energy transfer to the lowest possible excitonic state. Transfer to semiconducting carbon nanotubes is possible only if>=epsilon(g)-epsilon(b). The long range behavior of the rate of transfer has been found to have a d(-5) dependence if h >=epsilon(g). But, when the emission energy of the fluorophore is in the range epsilon(g)>h >=epsilon(g)-epsilon(b), the rate has an exponential dependence on the distance. For the case of transfer from pyrene to the semiconducting (6,4) carbon nanotube, energy transfer is found to be appreciable up to a distance of similar to 175 A degrees.
Resumo:
We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R-2 rather than as R-6, suggested by the Foumlrster type of dipolar approximation. Our time-evolution study alsom shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Foumlrster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Foumlrster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Foumlrster theory since the one-photon transition intensity to these states (from the ground state) is zero.
Resumo:
Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance and lifetime and cause contamination and impaired quality of the industrial product. In this thesis we studied bacterial adherence to abiotic surfaces by using coupons of stainless steel coated or not coated with fluoropolymer or diamond like carbon (DLC). As model organisms we used bacterial isolates from paper machines (Meiothermus silvanus, Pseudoxanthomonas taiwanensis and Deinococcus geothermalis) and also well characterised species isolated from medical implants (Staphylococcus epidermidis). We found that coating of steel surface with these materials reduced its tendency towards biofouling: Fluoropolymer and DLC coatings repelled all four biofilm formers on steel. We found great differences between bacterial species in their preference of surfaces to adhere as well as their ultrastructural details, like number and thickness of adhesion organelles they expressed. These details responded differently towards the different surfaces they adhered to. We further found that biofilms of D. geothermalis formed on titanium dioxide coated coupons of glass, steel and titanium, were effectively removed by photocatalytic action in response to irradiation at 360 nm. However, on non-coated glass or steel surfaces irradiation had no detectable effect on the amount of bacterial biomass. We showed that the adhesion organelles of bacteria on illuminated TiO2 coated coupons were complety destroyed whereas on non-coated coupons they looked intact when observed by microscope. Stainless steel is the most widely used material for industrial process equipments and surfaces. The results in this thesis showed that stainless steel is prone to biofouling by phylogenetically distant bacterial species and that coating of the steel may offer a tool for reduced biofouling of industrial equipment. Photocatalysis, on the other hand, is a potential technique for biofilm removal from surfaces in locations where high level of hygiene is required. Our study of natural biofilms on barley kernel surfaces showed that also there the microbes possessed adhesion organelles visible with electronmicroscope both before and after steeping. The microbial community of dry barley kernels turned into a dense biofilm covered with slimy extracellular polymeric substance (EPS) in the kernels after steeping in water. Steeping is the first step in malting. We also presented evidence showing that certain strains of Lactobacillus plantarum and Wickerhamomyces anomalus, when used as starter cultures in the steeping water, could enter the barley kernel and colonise the tissues of the barley kernel. By use of a starter culture it was possible to reduce the extensive production of EPS, which resulted in a faster filtration of the mash.
Resumo:
Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.
Resumo:
An optical technique is proposed for obtaining multiple excitation spots. Phase-matched counter propagating extended depth-of-focus fields were superimposed along the optical axis for generating multiple localized excitation spots. Moreover, the filtering effect due to the optical mask increases the lateral resolution. Proposed technique introduces the concept of simultaneous multiplane excitation and improves three-dimensional resolution. (C) 2010 American Institute of Physics.
Resumo:
In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton, a photon, significant transverse momentum imbalance (MET), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at 1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 lepton+photon+MET+b events versus an expectation of 31.0+4.1/-3.5 events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, ttbar+photon. In the data we observe 16 ttbar+photon candidate events versus an expectation from SM sources of 11.2+2.3/-2.1. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the ttg cross section to be 0.15 +- 0.08 pb.
Resumo:
The aim of this thesis is to examine migration of educated Dominicans in light of global processes. Current global developments have resulted in increasingly global movements of people, yet people tend to come from certain places in large numbers rather than others. At the same time, international migration is increasingly selective, which shows in the disproportional number of educated migrants. This study discovers individual and societal motivations that explain why young educated Dominicans decide to migrate and return. The theoretical framework of this thesis underlines that migration is a dynamic process rooted in other global developments. Migratory movements should be seen as a result of interacting macro- and microstructures, which are linked by a number of intermediate mechanisms, meso-structures. The way individuals perceive opportunity structures concretises the way global developments mediate to the micro-level. The case of the Dominican Republic shows that there is a diversity of local responses to the world system, as Dominicans have produced their own unique historical responses to global changes. The thesis explains that Dominican migration is importantly conditioned by socioeconomic and educational background. Migration is more accessible for the educated middle class, because of the availability of better resources. Educated migrants also seem less likely to rely on networks to organize their migrations. The role of networks in migration differs by socioeconomic background on the one hand, and by the specific connections each individual has to current and previous migrants on the other hand. The personal and cultural values of the migrant are also pivotal. The central argument of this thesis is that a veritable culture of migration has evolved in the Dominican Republic. The actual economic, political and social circumstances have led many Dominicans to believe that there are better opportunities elsewhere. The globalisation of certain expectations on the one hand, and the development of the specifically Dominican feeling of ‘externalism’ on the other, have for their part given rise to the Dominican culture of migration. The study also suggests that the current Dominican development model encourages migration. Besides global structures, local structures are found to ve pivotal in determining how global processes are materialised in a specific place. The research for this thesis was conducted by using qualitative methodology. The focus of this thesis was on thematic interviews that reveal the subject’s point of view and give a fuller understanding of migration and mobility of the educated. The data was mainly collected during a field research phase in Santo Domingo, the Dominican Republic in December 2009 and January 2010. The principal material consists of ten thematic interviews held with educated Dominican current or former migrants. Four expert interviews, relevant empirical data, theoretical literature and newspaper articles were also comprehensively used.
Resumo:
The probability that a random process crosses an arbitrary level for the first time is expressed as a Gram—Charlier series, the leading term of which is the Poisson approximation. The coefficients of this series are related to the moments of the number of level crossings. The results are applicable to both stationary and non-stationary processes. Some numerical results are presented for the response process of a linear single-degree-of-freedom oscillator under Gaussian white noise excitation.
Resumo:
Background: The onset of many chronic diseases such as type 2 diabetes can be delayed or prevented by changes in diet, physical activity and obesity. Known predictors of successful behaviour change include psychosocial factors such as selfefficacy, action and coping planning, and social support. However, gender and socioeconomic differences in these psychosocial mechanisms underlying health behaviour change have not been examined, despite well-documented sociodemographic differences in lifestyle-related mortality and morbidity. Additionally, although stable personality traits (such as dispositional optimism or pessimism and gender-role orientation: agency and communion) are related to health and health behaviour, to date they have rarely been studied in the context of health behaviour interventions. These personality traits might contribute to health behaviour change independently of the more modifiable domain-specific psychosocial factors, or indirectly through them, or moderated by them. The aims were to examine in an intervention setting: (1) whether changes (during the three-month intervention) in psychological determinants (self-efficacy beliefs, action planning and coping planning) predict changes in exercise and diet behaviours over three months and 12 months, (2) the universality assumption of behaviour change theories, i.e. whether preintervention levels and changes in psychosocial determinants are similar among genders and socioeconomic groups, and whether they predict changes in behaviour in a similar way in these groups, (3) whether the personality traits optimism, pessimism, agency and communion predict changes in abdominal obesity, and the nature of their interplay with modifiable and domain-specific psychosocial factors (self-efficacy and social support). Methods: Finnish men and women (N = 385) aged 50 65 years who were at an increased risk for type 2 diabetes were recruited from health care centres to participate in the GOod Ageing in Lahti Region (GOAL) Lifestyle Implementation Trial. The programme aimed to improve participants lifestyle (physical activity, eating) and decrease their overweight. The measurements of self-efficacy, planning, social support and dispositional optimism/pessimism were conducted pre-intervention at baseline (T1) and after the intensive phase of the intervention at three months (T2), and the measurements of exercise at T1, T2 and 12 months (T3) and healthy eating at T1 and T3. Waist circumference, an indicator of abdominal obesity, was measured at T1 and at oneyear (T3) and three-year (T4) follow-ups. Agency and communion were measured at T4 with the Personal Attributes Questionnaire (PAQ). Results: (1) Increases in self-efficacy and planning were associated with three-month increases in exercise (Study I). Moreover, both the post-intervention level and three-month increases (during the intervention) in self-efficacy in dealing with barriers predicted the 12-month increase in exercise, and a high postintervention level of coping plans predicted the 12-month decrease in dietary fat (Study II). One- and three-year waist circumference reductions were predicted by the initial three-month increase in self-efficacy (Studies III, IV). (2) Post-intervention at three months, women had formed more action plans for changing their exercise routines and received less social support for behaviour change than men had. The effects of adoption self-efficacy were similar but change in planning played a less significant role among men (Study I). Examining the effects of socioeconomic status (SES), psychosocial determinants at baseline and their changes during the intervention yielded largely similar results. Exercise barriers self-efficacy was enhanced slightly less among those with low SES. Psychosocial determinants predicted behaviour similarly across all SES groups (Study II). (3) Dispositional optimism and pessimism were unrelated to waist circumference change, directly or indirectly, and they did not influence changes in self-efficacy (Study III). Agency predicted 12-month waist circumference reduction among women. High communion coupled with high social support was associated with waist circumference reduction. However, the only significant predictor of three-year waist circumference reduction was an increase in health-related self-efficacy during the intervention (Study IV). Conclusions: Interventions should focus on improving participants self-efficacy early on in the intervention as well as prompting action and coping planning for health behaviour change. Such changes are likely to be similarly effective among intervention participants regardless of gender and educational level. Agentic orientation may operate via helping women to be less affected by the demands of the self-sacrificing female role and enabling them to assertively focus on their own goals. The earlier mixed results regarding the role of social support in behaviour change may be in part explained by personality traits such as communion.
An approximate analysis of non-linear non-conservative systems subjected to step function excitation
Resumo:
This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.
Resumo:
This paper summarizes literature explaining workplace bullying and focuses on organisational antecedents of bullying. In order to better understand the logic behind bullying, a model discussing different types of explanations is put forward. Thus, explanations for and factors associated with bullying are classified into three groups, i.e. enabling structures or necessary antecedents (e.g. perceived power imbalances, low perceived costs, and dissatisfaction and frustration), motivating structures or incentives (e.g. internal competition, reward systems, and expected benefits), and precipitating processes or triggering circumstances (e.g. downsizing and restructuring, organisational changes, changes in the composition of the workgroup). The paper concludes that bullying is often an interaction between structures and processes from all three groupings.
Resumo:
This study focuses on self-employed industrial designers and how they emerge new venture ideas. More specifically, this study strives to determine what design entrepreneurs do when they create new venture ideas, how venture ideas are nurtured into being, and how the processes are organized to bring such ideas to the market in the given industrial context. In contemporary times when the concern for the creative class is peaking, the research and business communities need more insight of the kind that this study provides, namely how professionals may contribute to their entrepreneurial processes and other agents’ business processes. On the one hand, the interviews underlying this study suggest that design entrepreneurs may act as reactive service providers who are appointed by producers or marketing parties to generate product-related ideas on their behalf. On the other hand, the interviews suggest that proactive behaviour that aims on generating own venture ideas, may force design entrepreneurs to take considerable responsibility in organizing their entrepreneurial processes. Another option is that they strive to bring venture ideas to the market in collaboration, or by passing these to other agents’ product development processes. Design entrepreneurs’ venture ideas typically emerge from design related starting points and observations. Product developers are mainly engaged with creating their own ideas, whereas service providers refer mainly to the development of other agents’ venture ideas. In contrast with design entrepreneurs, external actors commonly emphasize customer demand as their primary source for new venture ideas, as well as development of these in close interaction with available means of production and marketing. Consequently, design entrepreneurs need to address market demand since without sales their venture ideas may as well be classified as art. In case, they want to experiment with creative ideas, then there should be another source of income to support this typically uncertain and extensive process. Currently, it appears like a lot of good venture ideas and resources are being wasted, when venture ideas do not suite available production or business procedures. Sufficient communication between design entrepreneurs and other agents would assist all parties in developing production efficient and distributable venture ideas. Overall, the findings suggest that design entrepreneurs are often involved simultaneously in several processes that aim at emerging new product related ventures. Consequently, design entrepreneurship is conceptualized in this study as a dual process. This implies that design entrepreneurs can simultaneously be in charge of their entrepreneurial processes, as they operate as resources in other agents’ business processes. The interconnection between activities and agents suggests that these kinds of processes tend to be both complex and multifaceted to their nature.