907 resultados para energy density


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some current meter data obtained from a mooring at 2450 m water depth near the continental slope off Portugal are presented. The mean currents at five levels with observations are northward. Mean speeds in the core of the Mediterranean Water exceed speeds at shallower levels by 2 to 3 cm/sec, indicating advection connected to this specific water mass. The current variability is dominated by semi-diurnal tidal components. Normal mode analysis reveals a predominant mode of order 2, representing 48% of the total kinetic tidal energy. Results for the barotropic tidal component are in good agreement with earlier predictions for this area. The motion at higher frequencies w in the internal gravity wave band can be well described by a w**-2 power law for the energy density spectrum. This result is consistent with earlier observations in other parts of the ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing energy demand is being met largely by fossil fuel reserves, which emit CO2, SOx gases and various other pollutants. So does the search for fuels that emit fewer pollutants and have the same energy efficiency. In this context, hydrogen (H2) has been increasingly recognized as a potential carrier of energy for the near future. This is because the H2 can be obtained by different routes and has a wide application area , in addition to having clean burning, generating only H2O as a product of combustion , and higher energy density per unit mass . The Chemical Looping Reforming process (CLR) has been extensively investigated in recent years, it is possible to regenerate the catalyst by applying cycles of reduction and oxidation. This work has as main objective to develop catalysts based on nickel and cobalt to study the reactivity of reform with chemical recycling process. The catalysts were prepared by three different methods: combustion assisted by microwave, wet impregnation and co-precipitation. All catalysts synthesized have the same amount by weight of the active phases (60% w / w). The other 40 % m/m consists in La2O3 (8% w / w), Al2O3 (30% w / w) and MgO (2%). Oxygen carriers have been named as follows: N or C, nickel or cobalt, followed by the number 3 or 6, meaning 30 to 60% of active phase in the oxide form and C, CI or CP, which means self-combustion assisted by microwave, self-combustion assisted by microwave followed by wet impregnation and co-precipitation. The oxygen carriers were then characterized by the techniques of X-ray diffraction (XRD), surface area (BET), temperature programmed reduction (TPR) and scanning electron microscopy (SEM). The characterization results showed that the different synthesis methods have led to obtaining different morphologies and structures. Redox tests using CH4 as reducing agent and sintetic air as oxidant agent was done with N6C and C6C, N6CI and C6CI and N6CP and C6CP oxygen carriers. The tests revealed different behaviors, depending on active phase and on synthesis procedure. N6C oxygen carrier produced high levels of H2. The C6CI oxygen carrier produced CO2 and H2O without carbon deposits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A significant observational effort has been directed to investigate the nature of the so-called dark energy. In this dissertation we derive constraints on dark energy models using three different observable: measurements of the Hubble rate H(z) (compiled by Meng et al. in 2015.); distance modulus of 580 Supernovae Type Ia (Union catalog Compilation 2.1, 2011); and the observations of baryon acoustic oscilations (BAO) and the cosmic microwave background (CMB) by using the so-called CMB/BAO of six peaks of BAO (a peak determined through the Survey 6dFGS data, two through the SDSS and three through WiggleZ). The statistical analysis used was the method of the χ2 minimum (marginalized or minimized over h whenever possible) to link the cosmological parameter: m, ω and δω0. These tests were applied in two parameterization of the parameter ω of the equation of state of dark energy, p = ωρ (here, p is the pressure and ρ is the component of energy density). In one, ω is considered constant and less than -1/3, known as XCDM model; in the other the parameter of state equantion varies with the redshift, where we the call model GS. This last model is based on arguments that arise from the theory of cosmological inflation. For comparison it was also made the analysis of model CDM. Comparison of cosmological models with different observations lead to different optimal settings. Thus, to classify the observational viability of different theoretical models we use two criteria information, the Bayesian information criterion (BIC) and the Akaike information criteria (AIC). The Fisher matrix tool was incorporated into our testing to provide us with the uncertainty of the parameters of each theoretical model. We found that the complementarity of tests is necessary inorder we do not have degenerate parametric spaces. Making the minimization process we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are m = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059. Performing a marginalization we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are M = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A significant observational effort has been directed to investigate the nature of the so-called dark energy. In this dissertation we derive constraints on dark energy models using three different observable: measurements of the Hubble rate H(z) (compiled by Meng et al. in 2015.); distance modulus of 580 Supernovae Type Ia (Union catalog Compilation 2.1, 2011); and the observations of baryon acoustic oscilations (BAO) and the cosmic microwave background (CMB) by using the so-called CMB/BAO of six peaks of BAO (a peak determined through the Survey 6dFGS data, two through the SDSS and three through WiggleZ). The statistical analysis used was the method of the χ2 minimum (marginalized or minimized over h whenever possible) to link the cosmological parameter: m, ω and δω0. These tests were applied in two parameterization of the parameter ω of the equation of state of dark energy, p = ωρ (here, p is the pressure and ρ is the component of energy density). In one, ω is considered constant and less than -1/3, known as XCDM model; in the other the parameter of state equantion varies with the redshift, where we the call model GS. This last model is based on arguments that arise from the theory of cosmological inflation. For comparison it was also made the analysis of model CDM. Comparison of cosmological models with different observations lead to different optimal settings. Thus, to classify the observational viability of different theoretical models we use two criteria information, the Bayesian information criterion (BIC) and the Akaike information criteria (AIC). The Fisher matrix tool was incorporated into our testing to provide us with the uncertainty of the parameters of each theoretical model. We found that the complementarity of tests is necessary inorder we do not have degenerate parametric spaces. Making the minimization process we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are m = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059. Performing a marginalization we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are M = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diabetes Mellitus (DM ) is a complex disease that requires continuous medical care for the reduction of risk factors in addition to glycemic control. The typical hyperglycemia of this disease produces glycosylation of proteins and so the consequence is the accumulation of glycosylation final products in various human tissues, among them, the tendon. The aerobic exercise (AE) and the low level laser therapy (LLLT) have been used to treat tendinopathies in individuals with or without DM. Objective: The aim of this study was to watch the effect of the LLLT and the AE, in association, in partial tenotomy of the tissue repair of the Achilles tendon (AT) of diabetic rats. Methods: 91 animals were utilized and divided in to the following groups: control group (GC), injured control group (GCL), diabetic group (GD), diabetic group LLLT (GD – TLBI), diabetic group trained (GD - EX) and diabetic group trained laser (GD-EX+TLBI). The animals were submitted to intervention with AE, using a protocol with a progressive increase of time (12 to 60 min) and speed of (4 to 9 m/min), and the LLLT (660 nm laser, 10mW, 4 J/cm², single point for 16 seconds, three times for week). It was analyzed morphological, biomechanical and molecular characteristics. For data showing normal distribution was used one-way ANOVA test and post hoc Tukey and data without normal distribution was used Mann Whitney test and post hoc Dunn's. It was accepted p <0.05 for statistical significance Results: The biomechanical tests indicated major improvement in the GC and GD-EX+TLBI groups when compared with the diabetic groups in the following variables: maximum load, strain, absorbed energy, stress, cross section area, elastic modulus and energy density (p<0.05). The analysis through molecular biology indicated that the association of aerobic exercise and LLLT generated an increase of the collagen I gene expression and modulated the expression of the MMP2 and MMP9 (p<0.05). No observed any major improvement in the morphological variable studied. Conclusion: the LLLT associated with aerobic exercise promotes and increase of the mechanical properties, in the control of collagen I gene expression and of the MMP2 and MMP9 of the diabetic rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a morphology study of intermediate-redshift (0.2 < z < 1.2) luminous infrared galaxies (LIRGs) and general field galaxies in the GOODS fields using a revised asymmetry measurement method optimized for deep fields. By taking careful account of the importance of the underlying sky-background structures, our new method does not suffer from systematic bias and offers small uncertainties. By redshifting local LIRGs and low-redshift GOODS galaxies to different higher redshifts, we have found that the redshift dependence of the galaxy asymmetry due to surface-brightness dimming is a function of the asymmetry itself, with larger corrections for more asymmetric objects. By applying redshift-, infrared (IR)-luminosity- and optical-brightness-dependent asymmetry corrections, we have found that intermediate-redshift LIRGs generally show highly asymmetric morphologies, with implied merger fractions ~50% up to z = 1.2, although they are slightly more symmetric than local LIRGs. For general field galaxies, we find an almost constant relatively high merger fraction (20%-30%). The B-band luminosity functions (LFs) of galaxy mergers are derived at different redshifts up to z = 1.2 and confirm the weak evolution of the merger fraction after breaking the luminosity-density degeneracy. The IR LFs of galaxy mergers are also derived, indicating a larger merger fraction at higher IR luminosity. The integral of the merger IR LFs indicates a dramatic evolution of the merger-induced IR energy density [(1 + z)^~(5-6)], and that galaxy mergers start to dominate the cosmic IR energy density at z greater than or ~ 1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen has been called the fuel of the future, and as it’s non- renewable counterparts become scarce the economic viability of hydrogen gains traction. The potential of hydrogen is marked by its high mass specific energy density and wide applicability as a fuel in fuel cell vehicles and homes. However hydrogen’s volume must be reduced via pressurization or liquefaction in order to make it more transportable and volume efficient. Currently the vast majority of industrially produced hydrogen comes from steam reforming of natural gas. This practice yields low-pressure gas which must then be compressed at considerable cost and uses fossil fuels as a feedstock leaving behind harmful CO and CO2 gases as a by-product. The second method used by industry to produce hydrogen gas is low pressure electrolysis. In comparison the electrolysis of water at low pressure can produce pure hydrogen and oxygen gas with no harmful by-products using only water as a feedstock, but it will still need to be compressed before use. Multiple theoretical works agree that high pressure electrolysis could reduce the energy losses due to product gas compression. However these works openly admit that their projected gains are purely theoretical and ignore the practical limitations and resistances of a real life high pressure system. The goal of this work is to experimentally confirm the proposed thermodynamic gains of ultra-high pressure electrolysis in alkaline solution and characterize the behavior of a real life high pressure system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A binder-free cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/microflake structure is synthesized on nickel foam (NF) via a facile hydrothermal process. Four different concentrations (2.5, 5, 10, and 20 mM) of Co2+ and PO4–3 were used to obtain different mass loading of cobalt phosphate on the nickel foam. The Co3(PO4)2·8H2O modified NF electrode (2.5 mM) shows a maximum specific capacity of 868.3 C g–1 (capacitance of 1578.7 F g–1) at a current density of 5 mA cm–2 and remains as high as 566.3 C g–1 (1029.5 F g–1) at 50 mA cm–2 in 1 M NaOH. A supercapattery assembled using Co3(PO4)2·8H2O/NF as the positive electrode and activated carbon/NF as the negative electrode delivers a gravimetric capacitance of 111.2 F g–1 (volumetric capacitance of 4.44 F cm–3). Furthermore, the device offers a high specific energy of 29.29 Wh kg–1 (energy density of 1.17 mWh cm–3) and a specific power of 4687 W kg–1 (power density of 187.5 mW cm–3).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment", approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the bifunctional mechanism on PtSn catalyst. The positive influence of Sn was also confirmed in the PtSn nanoparticle catalyst prepared by the modification of commercial Pt/C nanoparticle and a higher activity was observed for PtSn (3:1) composition. The temperature-dependent data showed that the activation energy for butanol oxidation reaction over PtSn/C is lower than that over Pt/C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A l’heure actuelle, les biocarburants renouvelables et qui ne nuit pas à l'environnement sont à l'étude intensive en raison de l'augmentation des problèmes de santé et de la diminution des combustibles fossiles. H2 est l'un des candidats les plus prometteurs en raison de ses caractéristiques uniques, telles que la densité d'énergie élevée et la génération faible ou inexistante de polluants. Une façon attrayante pour produire la H2 est par les bactéries photosynthétiques qui peuvent capter l'énergie lumineuse pour actionner la production H2 avec leur système de nitrogénase. L'objectif principal de cette étude était d'améliorer le rendement de H2 des bactéries photosynthétiques pourpres non sulfureuses utilisant une combinaison de génie métabolique et le plan des expériences. Une hypothèse est que le rendement en H2 pourrait être améliorée par la redirection de flux de cycle du Calvin-Benson-Bassham envers du système de nitrogénase qui catalyse la réduction des protons en H2. Ainsi, un PRK, phosphoribulose kinase, mutant « knock-out » de Rhodobacter capsulatus JP91 a été créé. L’analyse de la croissance sur des différentes sources de carbone a montré que ce mutant ne peut croître qu’avec l’acétate, sans toutefois produire d' H2. Un mutant spontané, YL1, a été récupéré qui a retenu l'cbbP (codant pour PRK) mutation d'origine, mais qui avait acquis la capacité de se développer sur le glucose et produire H2. Une étude de la production H2 sous différents niveaux d'éclairage a montré que le rendement d’YL1 était de 20-40% supérieure à la souche type sauvage JP91. Cependant, il n'y avait pas d'amélioration notable du taux de production de H2. Une étude cinétique a montré que la croissance et la production d'hydrogène sont fortement liées avec des électrons à partir du glucose principalement dirigés vers la production de H2 et la formation de la biomasse. Sous des intensités lumineuses faibles à intermédiaires, la production d'acides organiques est importante, ce qui suggère une nouvelle amélioration additionnel du rendement H2 pourrait être possible grâce à l'optimisation des processus. Dans une série d'expériences associées, un autre mutant spontané, YL2, qui a un phénotype similaire à YL1, a été testé pour la croissance dans un milieu contenant de l'ammonium. Les résultats ont montré que YL2 ne peut croître que avec de l'acétate comme source de carbone, encore une fois, sans produire de H2. Une incubation prolongée dans les milieux qui ne supportent pas la croissance de YL2 a permis l'isolement de deux mutants spontanés secondaires intéressants, YL3 et YL4. L'analyse par empreint du pied Western a montré que les deux souches ont, dans une gamme de concentrations d'ammonium, l'expression constitutive de la nitrogénase. Les génomes d’YL2, YL3 et YL4 ont été séquencés afin de trouver les mutations responsables de ce phénomène. Fait intéressant, les mutations de nifA1 et nifA2 ont été trouvés dans les deux YL3 et YL4. Il est probable qu'un changement conformationnel de NifA modifie l'interaction protéine-protéine entre NifA et PII protéines (telles que GlnB ou GlnK), lui permettant d'échapper à la régulation par l'ammonium, et donc d'être capable d'activer la transcription de la nitrogénase en présence d'ammonium. On ignore comment le nitrogénase synthétisé est capable de maintenir son activité parce qu’en théorie, il devrait également être soumis à une régulation post-traductionnelle par ammonium. Une autre preuve pourrait être obtenue par l'étude du transcriptome d’YL3 et YL4. Une première étude sur la production d’ H2 par YL3 et YL4 ont montré qu'ils sont capables d’une beaucoup plus grande production d'hydrogène que JP91 en milieu d'ammonium, qui ouvre la porte pour les études futures avec ces souches en utilisant des déchets contenant de l'ammonium en tant que substrats. Enfin, le reformage biologique de l'éthanol à H2 avec la bactérie photosynthétique, Rhodopseudomonas palustris CGA009 a été examiné. La production d'éthanol avec fermentation utilisant des ressources renouvelables microbiennes a été traitée comme une technique mature. Cependant, la plupart des études du reformage de l'éthanol à H2 se sont concentrés sur le reformage chimique à la vapeur, ce qui nécessite généralement une haute charge énergetique et résultats dans les émissions de gaz toxiques. Ainsi le reformage biologique de l'éthanol à H2 avec des bactéries photosynthétiques, qui peuvent capturer la lumière pour répondre aux besoins énergétiques de cette réaction, semble d’être plus prometteuse. Une étude précédente a démontré la production d'hydrogène à partir d'éthanol, toutefois, le rendement ou la durée de cette réaction n'a pas été examiné. Une analyse RSM (méthode de surface de réponse) a été réalisée dans laquelle les concentrations de trois facteurs principaux, l'intensité lumineuse, de l'éthanol et du glutamate ont été variés. Nos résultats ont montré que près de 2 moles de H2 peuvent être obtenus à partir d'une mole d'éthanol, 33% de ce qui est théoriquement possible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: In 2013, the Revised Dietary Goals for Scotland (SDGs) were published to “indicate the direction of travel, and assist policy development to reduce the burden of obesity and diet-related disease in Scotland”. They include recommendations for foods (fruit and vegetables, oily fish and red meat) and nutrients (energy, energy density, total fat, saturated fat, trans fatty acids, sugar, salt and fibre). Progress towards the SDGs is monitored using a combination of surveys, principally the secondary analysis of the Living Costs and Food Survey (LCFS). Objective: To obtain estimates of food consumption and nutrient intake for Scotland using LCFS data from 2001 to 2013. Results: For SDGs measured using LCFS data there was little progress towards meeting the goals between 2001 and 2013. This was apparent even amongst least deprived households. Despite evidence of progress for fruit and vegetables up to 2010, consumption subsequently dropped; and there was no change in oil rich fish consumption. Mean total red meat consumption meets the SDG and a significant reduction was found between 2001 and 2013, which was partly accounted for by a fall in red meat products such as sausages and burgers. Energy density increased significantly over time despite a dip in 2012. Saturated fat, total fat and sugar intakes remained considerably higher than the SDGs. Overall there were small but significant decreases in the percentage of food energy from saturated fat and sugars, although intakes appear to have risen since 2011. There was no change in fibre intake. Conclusion: The results presented support work by Food Standards Scotland and the Scottish Government to facilitate improvements to the diet to help prevent obesity. Whilst some very small improvements were observed however, new approaches are required to encourage the population towards a healthier diet to secure Scotland’s health in the future. Funded by Food Standards Scotland, Project Number FS424018. Data provided by DEFRA, Scottish Neighbourhood Statistics, ONS and the UK Data Archive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No panorama energético atual, medidas de desenvolvimento sustentável têm uma preponderância cada vez mais significativa e, sendo os edifícios responsáveis por 40% da energia consumida na EU, enquadra-se o desafio de integrar medidas de eficiência energética nos novos edifícios desde a fase de conceção. Sendo que este setor se encontra em contínua expansão, a redução dos consumos passará largamente pela otimização do comportamento térmico dos edifícios e dos sistemas energéticos que os equipam. No presente trabalho estudou-se o papel da inércia térmica na redução das necessidades de energia para climatização de edifícios com o objetivo de identificar estratégias destinadas ao melhoramento do comportamento térmico e desempenho energético de edifícios construídos com recurso à técnica construtiva LSF, caracterizados por uma fraca inércia térmica quando comparados com edifícios em tudo semelhantes mas construídos recorrendo a tecnologias convencionais sem esquecer as questões relacionadas com a respetiva viabilidade económica. Com resultado geral destaca-se desde logo a importância do local onde é mais benéfico adicionar massa térmica (paredes exteriores, cobertura, paredes interiores), assim como a necessidade de utilização de um material com elevada densidade energética e baixo custo. A análise comparativa dos diferentes modelos de edifício simulados com recurso ao software DesignBuilder/EnergyPlus, foi realizada recorrendo a uma metodologia em que cada modelo construtivo é avaliado considerando quatro níveis de isolamento térmico e duas condições de cargas térmicas internas. A análise energética e económica foi realizada tendo como referência um período de 20 anos. O custo das soluções construtivas foi maioritariamente obtido através da ferramenta computacional Gerador de Preços, da Cype, SA©, tendo-se considerado um consumo energético anual constante e igual às necessidades de climatização anuais, assim como taxas de atualização de capital e de inflação do custo da energia constantes. De uma forma geral conclui-se que edifícios do tipo LSF melhorados através da adição criteriosa de massa térmica em determinados elementos construtivos, apresentam necessidades de climatização anuais na maioria dos casos estudados, inferiores àquelas verificadas em edifícios convencionais com inércia térmica média/forte. Conclui-se, também, que o método construtivo LSF se apresenta mais eficaz em termos energéticos e económicos quando comparado com soluções semelhantes construídas com recurso a um método convencional. Na secção seguinte são identificadas as principais conclusões deste trabalho.