991 resultados para effective pollinator
Resumo:
Genetic structure and average long-term connectivity and effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation.
Resumo:
Otter trawls are very effective at capturing flatfish, but they can affect the seaf loor ecosystems where they are used. Alaska f latf ish trawlers have very long cables (called sweeps) between doors and net to herd fish into the path of the trawl. These sweeps, which ride on and can disturb the seaf loor, account for most of the area affected by these trawls and hence a large proportion of the potential for damage to seaf loor organisms. We examined modifications to otter trawls, such that disk clusters were installed at 9-m intervals to raise trawl sweeps small distances above the seafloor, greatly reducing the area of direct seafloor contact. A critical consideration was whether flatfish would still be herded effectively by these sweeps. We compared conventional and modified sweeps using a twin trawl system and analyzed the volume and composition of the resulting catches. We tested sweeps raised 5, 7.5, and 10 cm and observed no significant losses of flatfish catch until sweeps were raised 10 cm, and those losses were relatively small (5–10%). No size composition changes were detected in the flatfish catches. Alaska pollock (Theragra chalcogramma) were captured at higher rates with two versions of the modified sweeps. Sonar observations of the sweeps in operation and the seaf loor after passage confirmed that the area of direct seafloor contact was greatly reduced by the modified sweep
Resumo:
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short-and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.
Resumo:
We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.
Resumo:
Global fishmeal production from wild-catch sources cannot continue to increase indefinitely; suitable alternatives have to be found for sustainable aquaculture. Plant-based aquafeed seems to be the ideal alternative to this, but has its own limitations. Plant ingredients are rich in phytic acid, which reduces the bioavailability of nutrients like minerals and protein to the fish, thereby causing aquaculture pollution. Dietary phytase treatment reduces the aquaculture pollution by improving the bioavailability of nutrients, and reduces the feed cost as evident from poultry and piggery. Phytase activity is highly dependent upon the pH of the gut. Unlike mammals, fish are either gastric or agastric, and hence, the action of dietary phytase varies from species to species. In this article, the authors attempt to summarise various effects of phytase on nutrient utilization, growth of fish and aquatic pollution.
Resumo:
The Global Coral Reef Monitoring Network (GCRMN) is an operational unit of the International Coral Reef Initiative (ICRI), established in 1995 and maintained by the Australian Institute of Marine Science (AIMS). The main responsibilities are to provide data and information on the global status of coral reefs, assess how people use and interact with reefs, assist coral reef management, and raise awareness among all stakeholders of the status of reefs and the need for urgent action. It is represented by 17 regional nodes, with overall coordination by a global coordinator based at AIMS.
Resumo:
This paper gives an overview of the economic rationale for limited entry as a method of fishery management and discusses general advantages and disadvantages of license limitation and catch rights as the two primary methods of restricting access to marine fisheries. Traditional open-access methods of regulation (e.g., gear restrictions, size limits, trip limits, quotas, and closures) can be temporarily effective in protecting fish populations, but they generally fail to provide lasting biological or economic benefits to fishermen because they do not restrict access to the fishery. The general result of regulation with unrestricted access to a fishery is additional and more costly and complex regulations as competition increases for dwindling fishery resources. Regulation that restricts access to a fishery in conjunction with selected traditional methods of regulation would encourage efficient resource usage and minimize the need for future regulatory adjustments, provided that enforcement and monitoring costs are not too great. In theory, catch rights are superior to license limitation as a means of restricting access to a fishery.
Resumo:
Aquaculture production systems in developing countries are largely based on the use of unimproved species and strains. As knowledge and experience are accumulated in relation to the management, feeding and animal health issues of such production systems, the availability of genetically more productive stock becomes imperative in order to more effectively use resources. For instance, there is little point in providing ideal water conditions and optimum feed quality to fish that do not have the potential to grow faster and to be harvested on time, providing a product of the desired quality. Refinements in the production system and improvement of the stock used must progress hand in hand. In this paper we deal separately with genetic and non-genetic issues pertaining to the multiplication and dissemination of improved strains. The separation is somewhat arbitrary, and as will be evident from our discussion, there is frequent interaction between the two.