847 resultados para ecological sound
Resumo:
Three experiments attempted to clarify the effect of altering the spatial presentation of irrelevant auditory information. Previous research using serial recall tasks demonstrated a left-ear disadvantage for the presentation of irrelevant sounds (Hadlington, Bridges, & Darby, 2004). Experiments 1 and 2 examined the effects of manipulating the location of irrelevant sound on either a mental arithmetic task (Banbury & Berry, 1998) or a missing-item task (Jones & Macken, 1993; Experiment 4). Experiment 3 altered the amount of change in the irrelevant stream to assess how this affected the level of interference elicited. Two prerequisites appear necessary to produce the left-ear disadvantage; the presence of ordered structural changes in the irrelevant sound and the requirement for serial order processing of the attended information. The existence of a left-ear disadvantage highlights the role of the right hemisphere in the obligatory processing of auditory information. (c) 2006 Published by Elsevier Inc.
Resumo:
The assumption that ignoring irrelevant sound in a serial recall situation is identical to ignoring a non-target channel in dichotic listening is challenged. Dichotic listening is open to moderating effects of working memory capacity (Conway et al., 2001) whereas irrelevant sound effects (ISE) are not (Beaman, 2004). A right ear processing bias is apparent in dichotic listening, whereas the bias is to the left ear in the ISE (Hadlington et al., 2004). Positron emission tomography (PET) imaging data (Scott et al., 2004, submitted) show bilateral activation of the superior temporal gyrus (STG) in the presence of intelligible, but ignored, background speech and right hemisphere activation of the STG in the presence of unintelligible background speech. It is suggested that the right STG may be involved in the ISE and a particularly strong left ear effect might occur because of the contralateral connections in audition. It is further suggested that left STG activity is associated with dichotic listening effects and may be influenced by working memory span capacity. The relationship of this functional and neuroanatomical model to known neural correlates of working memory is considered.
Resumo:
Two experiments examine the effects of extraneous speech and nonspeech noise on a visual short-term memory task administered to younger and older adults. Experiment 1 confirms an earlier report that playing task-irrelevant speech is no more distracting for older adults than for younger adults (Rouleau T Belleville, 1996), indicating that "irrelevant sound effects" in short-term memory operate in a different manner to recalling targets in the presence of competing speech (Tun, O'Kane, T Wingfield, 2002). Experiment 2 extends this result to nonspeech noise and demonstrates that the result cannot be ascribed to hearing difficulties amongst the older age group, although the data also show that older adults rated the noise as less annoying and uncomfortable than younger adults. Implications for theories of the irrelevant sound effect, and for cognitive ageing, are discussed.
Resumo:
High-span individuals (as measured by the operation span [CSPAN] technique) are less likely than low-span individuals to notice their own names in an unattended auditory stream (A. R. A. Conway, N. Cowan, & M F. Bunting, 2001). The possibility that OSPAN accounts for individual differences in auditory distraction on an immediate recall test was examined. There was no evidence that high-OSPAN participants were more resistant to the disruption caused by irrelevant speech in serial or in free recall. Low-OSPAN participants did, however, make more semantically related intrusion errors from the irrelevant sound stream in a free recall test (Experiment 4). Results suggest that OSPAN mediates semantic components of auditory distraction dissociable from other aspects of the irrelevant sound effect.
Resumo:
Acquiring a mechanistic understanding of the role of the biotic feedbacks on the links between atmospheric CO2 concentrations and temperature is essential for trustworthy climate predictions. Currently, computer based simulations are the only available tool to estimate the global impact of the biotic feedbacks on future atmospheric CO2 and temperatures. Here we propose an alternative and complementary approaches by using materially closed and energetically open analogue/physical models of the carbon cycle. We argue that there is potential in using a materially closed approach to improve our understanding of the magnitude and sign of many biotic feedbacks, and that recent technological advance make this feasible. We also suggest how such systems could be designed and discuss the advantages and limitations of establishing physical models of the global carbon cycle.
Resumo:
Current measures used to estimate the risks of toxic chemicals are not relevant to the goals of the environmental protection process, and thus ecological risk assessment (ERA) is not used as extensively as it should be as a basis for cost-effective management of environmental resources. Appropriate population models can provide a powerful basis for expressing ecological risks that better inform the environmental management process and thus that are more likely to be used by managers. Here we provide at least five reasons why population modeling should play an important role in bridging the gap between what we measure and what we want to protect. We then describe six actions needed for its implementation into management-relevant ERA.