422 resultados para eccentric


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of study was to examine the effects of the world's most challenging mountain ultramarathon (Tor des Geants [TdG]) on running mechanics. Mechanical measurements were undertaken in male runners (n = 16) and a control group (n = 8) before (PRE), during (MID), and after (POST) the TdG. Contact (tc) and aerial (ta) times, step frequency (f), and running velocity (v) were sampled. Spring-mass parameters of peak vertical ground-reaction force (Fmax), vertical downward displacement of the center of mass (Deltaz), leg-length change (DeltaL), and vertical (kvert) and leg (kleg) stiffness were computed. Significant decreases were observed in runners between PRE and MID for ta (P < .001), Fmax (P < .001), Deltaz (P < .05), and kleg (P < .01). In contrast, f significantly increased (P < .05) between PRE and MID-TdG. No further changes were observed at POST for any of those variables, with the exception of kleg, which went back to PRE. During the TdG, experienced runners modified their running pattern and spring-mass behavior mainly during the first half. The current results suggest that these mechanical changes aim at minimizing the pain occurring in lower limbs mainly during the eccentric phases. One cannot rule out that this switch to a "safer" technique may also aim to anticipate further damages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrostatic Precipitators (ESP) are the most reliable and industrially used control devices to capture fine particles for reducing exhaust emission. Its efficiency is 99% or more. However, capturing submicron particles which are hazardous is still a problem as it involves complex flow phenomena and ESP design limitations. In this study, the effect of baffles on flow distribution inside the ESP is investigated computationally. Baffles are expected to increase the residence time of flue gas which helps to collect more particles into the collector plates, and hence increase the collection efficiency of an ESP. Besides, the placement of a baffle is likely to cause swirling of flue gas and hence sub-micron particles move towards the collector plate due to eccentric and electrostatic force. Therefore, the effects of position, shape and thickness of the baffles on collection efficiency which are also important for ESP design are reported in this study. The fluid flow distribution has been modelled using computational fluid dynamics (CFD) software Fluent and the result and outcome are presented and discussed. The result shows that baffles have significant influence on fluid flow pattern and the efficiency of ESP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We sought to determine the efficacy of using a continuous time course trial to assess the temporal profile of post-activation potentiation and to determine the time course of potentiation of discrete jump squat kinetic and kinematic variables. Eight physically trained men performed jump squats before and 4, 8, and 12 min after a 5-repetition maximum back squat. Time intervals were assessed in 3 discontinuous trials (each time interval assessed in a separate trial) and in 1 continuous trial (all time intervals assessed in a single trial). Percentage differences between continuous and discontinuous trials at each time interval were mostly insubstantial. Discrete variables displayed a diverse time course (effect size: trivial to large); time to maximal values ranged between 5.00 ± 2.53 min (concentric peak force) and 9.50 ± 2.98 min (eccentric mean force). Eccentric variables (8.58 ± 3.56 min) took longer to peak than concentric variables (6.64 ± 2.93 min) (effect size: small). Individual subjects attained maximal values for kinetic and kinematic variables at different time intervals, yet the 4-min interval typically displayed the greatest magnitude and frequency of potentiation. We conclude that a continuous time course trial does not substantially influence performance of subsequent jumps and is appropriate for determining the temporal profile of potentiation, which is influenced by discrete jump squat kinetic and kinematic variables and individual differences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current literature recommends dynamic rather than static stretching for the athletic warm-up. Dynamic stretching and various conditioning stimuli are used to induce potentiation in subsequent athletic performance. However, it is unknown as to which type of activity in conjunction with dynamic stretching within a warm-up provides the optimal potentiation of vertical jump performance. It was the objective of the study to examine the possible potentiating effect of various types of conditioning stimuli with dynamic stretching. Twenty athletes participated in 6 protocols. All the experimental protocols included 10 minutes of dynamic stretching. After the dynamic stretching, the subjects performed a (a) concentric (DS/CON): 3 sets of 3 repetition maximum deadlift exercise; (b) isometric (DS/ISOM): 3 sets of 3-second maximum voluntary contraction back squats; (c) plyometric (DS/PLYO): 3 sets of 3 tuck jumps; (d) eccentric (DS/ECC): 3 modified drop jumps; (e) dynamic stretching only (DS), and (f) control protocol (CON). Before the intervention and at recovery periods of 15 seconds, 4, 8, 12, 16, and 20 minutes, the participants performed 1-2 maximal countermovement jumps. The DS and DS/CON protocols generally had a 95-99% likelihood of exceeding the smallest worthwhile change for vertical jump height, peak power, velocity and force. However, the addition of the deadlift to the DS did not augment the potentiating effect. Time-to-peak potentiation was variable between individuals but was most consistent between 3 and 5 minutes. Thus, the volume and the intensity associated with 10 minutes of dynamic stretching were sufficient to provide the potentiation of vertical jump characteristics. Additional conditioning activities may promote fatigue processes, which do not permit further potentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Resistance training while using an instability-training device is known to increase activation of stabilizing muscle groups while decreasing the force generated by the prime movers during isometric contractions. Purpose: To investigate differences in squat kinetics during dynamic resistance training in an increasingly unstable training environment. Methods: Fourteen active men participated in this study. In each testing session, each participant performed 3 repetitions of squats with a 10-repetition maximum (10-RM) resistance, 40% of their 10-RM resistance, and 20.45 kg. The 3 testing session consisted of standing on a stable floor, foam pads, or BOSU balls. All repetitions were recorded with an optical encoder to record barbell kinetics. Results: The transition from stable (floor) to very unstable (BOSU) resulted in high likelihoods (>75%) of clinically meaningful differences ranging from small to large (effect size [ES] 0.31–1.73) in factors relating to concentric kinetics, eccentric power, and squat depth, regardless of the resistance used for training. There were also likely differences at the heaviest resistance in peak concentric power (stable to foam: ES 2.06; foam to BOSU: ES 0.38), eccentric power (stable to foam: ES 1.88; foam to BOSU: ES 0.74), and squat depth (stable to foam: ES 0.50; foam to BOSU: ES 0.67). Conclusions: Resistance training in an unstable environment at an intensity sufficient to elicit strength gains of the prime movers results in deleterious effects in concentric squat kinetics and squat technique. Such observations are particularly evident on very unstable platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SOUTH ROAD, a novel told in third-person limited, follows Adrienne Harris as she navigates the trials of her coming-of-age summer and then must deal with the aftermath. 1997: seventeen-year-old Adrienne Harris wants nothing more than to flee her eccentric grandmother’s rule and leave Harbor Point and never look back. When she meets her new neighbors, Adrienne knows her life will never be the same. Adrienne quickly falls in love with the charismatic Quinn Merritt. They decide to keep their relationship a secret since both families disapprove. This secret starts a chain reaction that seemingly leads to the suicide of the troubled and poetic Lucas Merritt. The summer culminates with Adrienne running away, pregnant and heartbroken. 2011: thirty-one-year-old Adrienne is an out of work line cook and single mother. The story opens as Adrienne reluctantly returns home to Harbor Point to care for her ailing grandmother. Once home, Adrienne has to confront the things that haunt her—the summer she met and lost both Merritt brothers, and also her dysfunctional relationship with her grandmother—in order to heal and repair her own life and her relationship with her daughter. In the end, Adrienne discovers many truths that alter her perception of her past in Harbor Point. Adrienne is finally able to move forward and start to build a life for her and her daughter. Harbor Point, the last place in the world Adrienne Harris wanted to be, turns out to be the only place she wants to call home.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomechanical adaptations that occur during pregnancy can lead to changes on gait pattern. Nevertheless, these adaptations of gait are still not fully understood. The purpose was to determine the effect of pregnancy on the biomechanical pattern of walking, regarding the kinetic parameters. A three-dimensional analysis was performed in eleven participants. The kinetic parameters in the joints of the lower limb during gait were compared at the end of the first, second, and third trimesters of pregnancy and in the postpartum period, in healthy pregnant women. The main results showed a reduction in the normalized vertical reaction forces, throughout pregnancy, particularly the third peak. Pregnant women showed, during most of the stance phase, medial reaction forces as a motor response to promote the body stability. Bilateral changes were observed in hip joint, with a decrease in the participation of the hip extensors and in the eccentric contraction of hip flexors. In ankle joint a decrease in the participation of ankle plantar flexors was found. In conclusion, the overall results point to biomechanical adjustments that showed a decrease of the mechanical load of women throughout pregnancy, with exception for few unilateral changes of hip joint moments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomechanical adaptations that occur during pregnancy can lead to changes on gait pattern. Nevertheless, these adaptations of gait are still not fully understood. The purpose was to determine the effect of pregnancy on the biomechanical pattern of walking, regarding the kinetic parameters. A three-dimensional analysis was performed in eleven participants. The kinetic parameters in the joints of the lower limb during gait were compared at the end of the first, second, and third trimesters of pregnancy and in the postpartum period, in healthy pregnant women. The main results showed a reduction in the normalized vertical reaction forces, throughout pregnancy, particularly the third peak. Pregnant women showed, during most of the stance phase, medial reaction forces as a motor response to promote the body stability. Bilateral changes were observed in hip joint, with a decrease in the participation of the hip extensors and in the eccentric contraction of hip flexors. In ankle joint a decrease in the participation of ankle plantar flexors was found. In conclusion, the overall results point to biomechanical adjustments that showed a decrease of the mechanical load of women throughout pregnancy, with exception for few unilateral changes of hip joint moments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciada em Fisioterapia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unaccustomed exercise consisting of eccentric (i.e., lengthening) muscle contractions often results in muscle damage characterized by ultrastructural alterations in muscle tissue, clinical signs and symptoms (e.g., reduced muscle strength and range of motion, increased muscle soreness and swelling, efflux of myocellular proteins). The time course of recovery following exercise-induced muscle damage depends on the extent of initial muscle damage, which in turn is influenced by the intensity and duration of exercise, joint angle/muscle length and muscle groups used during exercise. The effects of these factors on muscle strength, soreness and swelling are well characterized. By contrast, much less is known about how they affect intramuscular inflammation and molecular aspects of muscle adaptation/remodeling. Although inflammation has historically been viewed as detrimental for recovery from exercise, it is now generally accepted that inflammatory responses-if tightly regulated-are integral to muscle repair and regeneration. Animal studies have revealed that other cell types including mast cells, eosinophils, CD8 and T regulatory lymphocytes, fibro-adipogenic progenitors and pericytes also help to facilitate muscle tissue regeneration. However, more research is required to determine whether these cells respond to exercise-induced muscle damage. A large body of research has investigated the efficacy of physicotherapeutic, pharmacological and nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage, with mixed results. More research is needed to examine if/how these treatments influence inflammation and muscle remodeling during recovery from exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.