875 resultados para document clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report on implementation of the candidate gender quota in the Fianna Fail Party.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction
Mild cognitive impairment (MCI) has clinical value in its ability to predict later dementia. A better understanding of cognitive profiles can further help delineate who is most at risk of conversion to dementia. We aimed to (1) examine to what extent the usual MCI subtyping using core criteria corresponds to empirically defined clusters of patients (latent profile analysis [LPA] of continuous neuropsychological data) and (2) compare the two methods of subtyping memory clinic participants in their prediction of conversion to dementia.

Methods
Memory clinic participants (MCI, n = 139) and age-matched controls (n = 98) were recruited. Participants had a full cognitive assessment, and results were grouped (1) according to traditional MCI subtypes and (2) using LPA. MCI participants were followed over approximately 2 years after their initial assessment to monitor for conversion to dementia.

Results
Groups were well matched for age and education. Controls performed significantly better than MCI participants on all cognitive measures. With the traditional analysis, most MCI participants were in the amnestic multidomain subgroup (46.8%) and this group was most at risk of conversion to dementia (63%). From the LPA, a three-profile solution fit the data best. Profile 3 was the largest group (40.3%), the most cognitively impaired, and most at risk of conversion to dementia (68% of the group).

Discussion
LPA provides a useful adjunct in delineating MCI participants most at risk of conversion to dementia and adds confidence to standard categories of clinical inference.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most traditional data mining algorithms struggle to cope with the sheer scale of data efficiently. In this paper, we propose a general framework to accelerate existing clustering algorithms to cluster large-scale datasets which contain large numbers of attributes, items, and clusters. Our framework makes use of locality sensitive hashing (LSH) to significantly reduce the cluster search space. We also theoretically prove that our framework has a guaranteed error bound in terms of the clustering quality. This framework can be applied to a set of centroid-based clustering algorithms that assign an object to the most similar cluster, and we adopt the popular K-Modes categorical clustering algorithm to present how the framework can be applied. We validated our framework with five synthetic datasets and a real world Yahoo! Answers dataset. The experimental results demonstrate that our framework is able to speed up the existing clustering algorithm between factors of 2 and 6, while maintaining comparable cluster purity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most popular techniques of generating classifier ensembles is known as stacking which is based on a meta-learning approach. In this paper, we introduce an alternative method to stacking which is based on cluster analysis. Similar to stacking, instances from a validation set are initially classified by all base classifiers. The output of each classifier is subsequently considered as a new attribute of the instance. Following this, a validation set is divided into clusters according to the new attributes and a small subset of the original attributes of the instances. For each cluster, we find its centroid and calculate its class label. The collection of centroids is considered as a meta-classifier. Experimental results show that the new method outperformed all benchmark methods, namely Majority Voting, Stacking J48, Stacking LR, AdaBoost J48, and Random Forest, in 12 out of 22 data sets. The proposed method has two advantageous properties: it is very robust to relatively small training sets and it can be applied in semi-supervised learning problems. We provide a theoretical investigation regarding the proposed method. This demonstrates that for the method to be successful, the base classifiers applied in the ensemble should have greater than 50% accuracy levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social networks generally display a positively skewed degree distribution and higher values for clustering coefficient and degree assortativity than would be expected from the degree sequence. For some types of simulation studies, these properties need to be varied in the artificial networks over which simulations are to be conducted. Various algorithms to generate networks have been described in the literature but their ability to control all three of these network properties is limited. We introduce a spatially constructed algorithm that generates networks with constrained but arbitrary degree distribution, clustering coefficient and assortativity. Both a general approach and specific implementation are presented. The specific implementation is validated and used to generate networks with a constrained but broad range of property values. © Copyright JASSS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Clustering of lifestyle risk behaviours is very important in predicting premature mortality. Understanding the extent to which risk behaviours are clustered in deprived communities is vital to most effectively target public health interventions. Methods We examined co-occurrence and associations between risk behaviours (smoking, alcohol consumption, poor diet, low physical activity and high sedentary time) reported by adults living in deprived London neighbourhoods. Associations between sociodemographic characteristics and clustered risk behaviours were examined. Latent class analysis was used to identify underlying clustering of behaviours. Results Over 90% of respondents reported at least one risk behaviour. Reporting specific risk behaviours predicted reporting of further risk behaviours. Latent class analyses revealed four underlying classes. Membership of a maximal risk behaviour class was more likely for young, white males who were unable to work. Conclusions Compared with recent national level analysis, there was a weaker relationship between education and clustering of behaviours and a very high prevalence of clustering of risk behaviours in those unable to work. Young, white men who report difficulty managing on income were at high risk of reporting multiple risk behaviours. These groups may be an important target for interventions to reduce premature mortality caused by multiple risk behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we focus on the performance of clustering algorithms using indices of paired agreement to measure the accordance between clusters and an a priori known structure. We specifically propose a method to correct all indices considered for agreement by chance - the adjusted indices are meant to provide a realistic measure of clustering performance. The proposed method enables the correction of virtually any index - overcoming previous limitations known in the literature - and provides very precise results. We use simulated datasets under diverse scenarios and discuss the pertinence of our proposal which is particularly relevant when poorly separated clusters are considered. Finally we compare the performance of EM and KMeans algorithms, within each of the simulated scenarios and generally conclude that EM generally yields best results.