946 resultados para diphase anaerobic digestion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary carbohydrates provide an important source of energy for flight, and contribute to longevity and fecundity of mosquitoes. The most common sugar mosquitoes ingest is sucrose, and digestion of this substance is carried out mainly by alpha-glucosidases. In the current work, we tested the efficiency of sucrose on Anopheles aquasalis female diet. The best longevity (days) was reached when sugar was available in the diet, whereas most only blood fed females were dead 6 days after emergence. Three alpha-glucosidase isoforms were detected in the adult female midgut, named alpha Glu1, alpha Glu2 and alpha Glu3. These are acidic alpha-glucosidases with optima pH around pH 5.5. alpha Glu1 and alpha Glu2 are present in both secreted and membrane-bound forms, whereas alpha Glu3 only in anchored to membranes. The alpha-glucosidase activity is concentrated mainly in the posterior midgut (70%), both in non-fed or 10% sucrose fed females. The single form of these a-glucosidases seemed to be similar to 70 kDa polypeptides, although alpha Glu2 is presented in >= 600 kDa self-aggregates. K, values of alpha Glu1, alpha Glu2 and alpha Glu3 differed significantly from each other, supporting the statement that three alpha-glucosidases are produced in the female midgut. Together, all data suggest that sugar is an essential component of A. aquasalis female diet. In addition, alpha-glucosidases are synthesized in the same place where sucrose is digested and absorbed, the midgut. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 ± 23.8 W; UC = 180.2 ± 24.5 W) and AT (EC = 274.8 ± 24.9 W; UC = 187.2 ± 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 ± 1.2 mM) and UC (4.9 ± 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The break point of the curve of blood lactate vs exercise load has been called anaerobic threshold (AT) and is considered to be an important indicator of endurance exercise capacity in human subjects. There are few studies of AT determination in animals. We describe a protocol for AT determination by the lactate minimum test in rats during swimming exercise. The test is based on the premise that during an incremental exercise test, and after a bout of maximal exercise, blood lactate decreases to a minimum and then increases again. This minimum value indicates the intensity of the AT. Adult male (90 days) Wistar rats adapted to swimming for 2 weeks were used. The initial state of lactic acidosis was obtained by making the animals jump into the water and swim while carrying a load equivalent to 50% of body weight for 6 min (30-s exercise interrupted by a 30-s rest). After a 9-min rest, blood was collected and the incremental swimming test was started. The test consisted of swimming while supporting loads of 4.5, 5.0, 5.5, 6.0 and 7.0% of body weight. Each exercise load lasted 5 min and was followed by a 30-s rest during which blood samples were taken. The blood lactate minimum was determined from a zero-gradient tangent to a spline function fitting the blood lactate vs workload curve. AT was estimated to be 4.95 ± 0.10% of body weight while interpolated blood lactate was 7.17 ± 0.16 mmol/l. These results suggest the application of AT determination in animal studies concerning metabolism during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to verify the applicability of anaerobic work capacity (AWC) determined from the critical power model in elite table tennis players. Eight male international level table tennis players participated in the study. The tests undertaken were: 1) A critical frequency test used to determinate the anaerobic work capacity; 2) Wingate tests were performed using leg and arm ergometers. AWC corresponded to 99.5 +/- 29.1 table tennis balls. AWC was not related to peak (r = -0.25), mean (r = -0.02), relative peak (r = -0.49) or relative mean power (r = 0.01), nor fatigue index (r = -0.52) (Wingate leg ergometer). Similar correlations for peak (r = -0.34), mean (r = -0.04), relative peak (r = -0.49), relative mean power (r = -0.14) and peak blood lactate concentration (r = -0.08) were determined in the Wingate arm ergometer test. Based on these results the AWC determined by a modified critical power test was not a good index for measurement of anaerobic capacity in table tennis players.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. - This study aimed to test if investigate whether the anaerobic work capacity is replenished while exercising at critical power intensity. Then, a known exercise duration, which demands high anaerobic energy contribution, was compared to intermittent exercise duration with passive and active (cycling at critical power intensity) rest periods.Methods. - Nine participants performed five sessions of testing. From the 1st to the 3rd sessions, individuals cycled continuously at different workloads (P-high, P-intermediate and P-low) in order to estimate the critical power and the anaerobic work capacity. The 4th and 5th sessions were performed in order to determine the influence of anaerobic work capacity replenishment oil exercise duration. They consisted of manipulating the resting type (passive or active) between two cycling efforts. The total exercise duration was determined by the sum of the two cycling efforts duration.Results. - The exercise duration under passive resting condition (408.0 +/- 42.0 s) was longer (p<0.05) than known exercise duration at P-intermediate (T-intermediate = 305.8 +/- 30.5 s) and than exercise duration performed under active resting conditions (T-active = 304.4 +/- 30.7s). However, there was no significant difference between T-intermediate and T-active.Conclusion. - These results demonstrated indirect evidence that the anaerobic work capacity is not replenished while exercising at critical power intensity. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reptiles, particularly snakes, exhibit large and quantitatively similar increments in metabolic rate during muscular exercise and following a meal, when they are apparently inactive. The cardiovascular responses are similar during these two states, but the underlying autonomic control of the heart remains unknown. We describe both adrenergic and cholinergic tonus on the heart during rest, during enforced activity and during digestion (24-36h after ingestion of 30% of their body mass) in the snake Boa constrictor. The snakes were equipped with an arterial catheter for measurements of blood pressure and heart rate, and autonomic tonus was determined following infusion of the beta -adrenergic antagonist propranolol (3mg kg(-1)) and the muscarinic cholinoceptor antagonist atropine (3 mg kg-1).The mean heart rate of fasting animals at rest was 26.4 +/- 1.4 min(-1), and this increased to 36.1 +/- 1.4 min(-1) (means +/- S.E.M.; N=8) following double autonomic block (atropine and propranolol). The calculated cholinergic and adrenergic tones were 60.1 +/- 0.3% and 19.8 +/- 2.2%, respectively. Heart rate increased to 61.4 +/- 1.5 min(-1) during enforced activity, and this response was significantly reduced by propranolol (maximum values of 35.8 +/-1.6 min(-1)), but unaffected by atropine. The cholinergic and adrenergic tones were 2.6 +/- 2.2 and 41.3 +/- 1.9 % during activity, respectively. Double autonomic block virtually abolished tachycardia associated with enforced activity (heart rate increased significantly from 36.1 +/- 1.4 to 37.6 +/- 1.3 min(-1)), indicating that non-adrenergic, non-cholinergic effectors are not involved in regulating heart rate during activity. Blood pressure also increased during activity.Digestion was accompanied by an increase in heart rate from 25.6 +/- 1.3 to 47.7 +/- 2.2 min(-1) (N=8). In these animals, heart rate decreased to 44.2 +/- 2.7 min-1 following propranolol infusion and increased to 53.9 +/- 1.8 min-1 after infusion of atropine, resulting in small cholinergic and adrenergic tones (6.0 +/- 3.5 and 11.1 +/- 1.1 %, respectively). The heart rate of digesting snakes was 47.0 +/- 1.0 min(-1) after double autonomic blockade, which is significantly higher than the value of 36.1 1.4 min-1 in double-blocked fasting animals at rest. Therefore, it appears that some other factor exerts a positive chronotropic effect during digestion, and we propose that this factor may be a circulating regulatory peptide, possibly liberated from the gastrointestinal system in response to the presence of food.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not P-CO2, during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol 1(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial P-CO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial P-CO2. The increased arterial P-CO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial P-CO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than P-CO2 normally affects chemoreceptor activity and ventilatory drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3- levels in both extra- and intracellular compartments. The increase in plasma [HCO3-], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial Pco(2) caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in Paco(2) of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3-] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3-] and the rise in arterial Pco(2) that normally peaks 48 h into the digestive period. Vascular infusion of HCO3-, that mimicked the postprandial rise in plasma [HCO3-], led to a progressive respiratory compensation of arterial pH through increased arterial Pco(2) Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial Pco(2). It seems, therefore, that the elevated Pco(2), occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the alkaline tide. Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO3-](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO2 (PaCO2) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO2.Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO3 and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCOT] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L-1 during digestion and was accompanied by a respiratory compensation where PaCO2 increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO3 (7 mmol kg(-1)) resulted in a 10 mmol L-1 increase in plasma [HCO3-] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO2, however, did not change following HCO3- infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO3-](pl) was reduced by 4.6 mmol L-1 within the first 3 h. PaCO2, however, was not affected and there was no evidence for respiratory compensation.Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and peripheral chemoreceptors would experience different stimuli during these conditions. One explanation for the different ventilatory responses could be that digestion induces a more relaxed state with low responsiveness to ventilatory stimuli. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylamine and sulfate are compounds commonly found in wastewaters. This study aimed to determine the methanogenic potential of anaerobic reactors containing these compounds and to correlate it with their microbial communities. Batch experiments were performed at different methylamine/sulfate ratios of 0.71, 1.26 and 2.18 (with respect to mass concentration). Control and experimental runs were inoculated with fragmented granular sludge. The maximum specific methane formation rates were approximately 2.3 mmol CH4 L-1 g TVS-1 day-1 for all conditions containing methylamine, regardless of sulfate addition. At the end of the experiment, total ammonium-N and methane formation were proportional to the initial concentrations of methylamine. In the presence of methylamine and sulfate, Firmicutes (46%), Deferribacteres (13%) and Proteobacteria (12%) were the predominant phyla of the Bacteria domain, while Spirochaetes (40%), Deferribacteres (17%) and Bacteroidetes (16%) predominated in the presence of methylamine only. There was no competition for methylamine between sulfate-reducing bacteria and methanogenic archaea.