975 resultados para dielectric waveguides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an on-chip integrated ferroelectric liquid crystal (FLC) waveguide structure suitable for telecommunication applications. Single gaps with different widths of 5, 10, and 20 μ m inside individual silica waveguides were filled with an FLC mixture. The waveguide devices operate as a binary switch or an attenuator in a temperature range from 30 °C to 60 °C. The FLC mixture exhibited a good alignment quality in these gaps without alignment layers. A good extinction ratio of up to 33.9 dB and a low insertion loss of <4.3 dB at λ = 1550 nm were observed. Switching times of <100 μs were obtained for the low electric fields applied in this experiment. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental measurements on Silicon-on-insulator (SOI) photonic crystal slabs with an active layer containing Er3+ ions-doped Silicon nanoclusters (Si-nc), showing strong enhancement of 1.54 μm emission at room temperature. We provide a systematic theoretical analysis to interpret such results. In order to get further insight, we discuss experimental data on the guided luminescence of unpatterned SOI planar slot waveguides, which show enhanced light emission in transverse-magnetic (TM) modes over transverse-electric (TE) ones. ©2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hafnium oxide (HfOx) is a high dielectric constant (k) oxide which has been identified as being suitable for use as the gate dielectric in thin film transistors (TFTs). Amorphous materials are preferred for a gate dielectric, but it has been an ongoing challenge to produce amorphous HfOx while maintaining a high dielectric constant. A technique called high target utilization sputtering (HiTUS) is demonstrated to be capable of depositing high-k amorphous HfOx thin films at room temperature. The plasma is generated in a remote chamber, allowing higher rate deposition of films with minimal ion damage. Compared to a conventional sputtering system, the HiTUS technique allows finer control of the thin film microstructure. Using a conventional reactive rf magnetron sputtering technique, monoclinic nanocrystalline HfOx thin films have been deposited at a rate of ∼1.6nmmin-1 at room temperature, with a resistivity of 1013Ωcm, a breakdown strength of 3.5MVcm-1 and a dielectric constant of ∼18.2. By comparison, using the HiTUS process, amorphous HfOx (x=2.1) thin films which appear to have a cubic-like short-range order have been deposited at a high deposition rate of ∼25nmmin-1 with a high resistivity of 1014Ωcm, a breakdown strength of 3MVcm-1 and a high dielectric constant of ∼30. Two key conditions must be satisfied in the HiTUS system for high-k HfOx to be produced. Firstly, the correct oxygen flow rate is required for a given sputtering rate from the metallic target. Secondly, there must be an absence of energetic oxygen ion bombardment to maintain an amorphous microstructure and a high flux of medium energy species emitted from the metallic sputtering target to induce a cubic-like short range order. This HfOx is very attractive as a dielectric material for large-area electronic applications on flexible substrates. A remote plasma sputtering process (high target utilization sputtering, HiTUS) has been used to deposit amorphous hafnium oxide with a very high dielectric constant (∼30). X-ray diffraction shows that this material has a microstructure in which the atoms have a cubic-like short-range order, whereas radio frequency (rf) magnetron sputtering produced a monoclinic polycrystalline microstructure. This is correlated to the difference in the energetics of remote plasma and rf magnetron sputtering processes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical switching functionality is demonstrated in PCB integrated multimode passive polymer waveguides using a localised liquid-crystal cladding structure. Waveguide switching contrast of 15 dB is achieved with only 0.5 dB of on-state excess loss. © 2009 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k(1)=k(0)+k(delta) and k(2)=k(0)-k(delta), where k(delta) is proportional to the Rashba coefficient, and their spin orientations are +pi/2 (spin up) and -pi/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(+/- ik(delta)l)sin[k(0)(l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle theta of the circuit. The travel velocity of the Rashba waves with the wave vector k(1) or k(2) are the same hk(0)/m*. The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate numerically the self-imaging effect in a system of multiple coupled photonic crystal waveguides (M-CPCWs) with asymmetric coupling. Then two couplers of 2-CPCWs and 3-CPCWs are cascaded to form an ultracompact triplexer by employing coupling and decoupling of M-CPCWs. The wavelength of 1310 nm propagates along the input direction because the M-CPCWs are decoupled at the same decoupling frequency. The other two wavelengths (1490 and 1550 nm) are separated by combining multimode interference and the dual mode coupling effect. Only by introducing a single defect near the crossing point between two output photonic crystal waveguides (PCWs) are the high extinction ratios for the three wavelengths achieved simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional gate dielectric material Of SiO2 can not satisfy the need of the continuous downscaling of CMOS dimensions. High-K gate dielectric materials have attracted extensive research efforts recently and obtained great progress. In this paper, the developments of high-K gate materials were reviewed. Based on the author's background and research work in the area, the latest achievements of high-K gate dielectric materials on the recrystalization temperature, the low-K interface layer, and the dielectric breakdown and metal gate electrode were introduced in detail.