1000 resultados para dense matter
Resumo:
The propagation of the fast muon population mainly due to collisional effect in a dense deuterium-tritium (DT for short) mixture is investigated and analysed within the framework of the relativistic Fokker-Planck equation. Without the approximation that the muons propagate straightly in the DT mixture, the muon penetration length, the straggling length, and the mean transverse dispersion radius are calculated for different initial energies, and especially for different densities of the densely compressed DT mixture in our suggested muon-driven fast ignition (FI). Unlike laser-driven FI requiring super-high temperature, muons can catalyze DT fusion at lower temperatures and may generate an ignition sparkle before the self-heating fusion follows. Our calculation is important for the feasibility and the experimental study of muon-driven FI.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.
Resumo:
In this study, by adopting the ion sphere model, the self-consistent. field method is used with the Poisson-Boltzmann equation and the Dirac equation to calculate the ground-state energies of H-like Ti at a plasma electron density from 10(22) cm(-3) to 10(24) cm(-3) and the electron temperature from 100 eV to 3600 eV. The ground-state energy shifts of H-like Ti show different trends with the electron density and the electron temperature. It is shown that the energy shifts increase with the increase in the electron density and decrease with the increase in the electron temperature. The energy shifts are sensitive to the electron density, but only sensitive to the low electron temperature. In addition, an accurately fitting formula is obtained to fast estimate the ground-state energies of H-like Ti. Such fitted formula can also be used to estimate the critical electron density of pressure ionization for the ground state of H-like Ti.
Resumo:
The impact of a laser-accelerated micron-size projectile on a dense plasma target is studied using two-dimensional particle-in-cell simulations. The projectile is first accelerated by an ultraintense laser. It then impinges on the dense plasma target and merges with the latter. Part of the kinetic energy of the laser-accelerated ions in the projectile is deposited in the fused target, and an extremely high concentration of plasma ions with a mean kinetic energy needed for fusion reaction is induced. The interaction is thus useful for laser-driven impact fusion and as a compact neutron source.
Resumo:
This thesis is divided into two parts: interacting dark matter and fluctuations in cosmology. There is an incongruence between the properties that dark matter is expected to possess between the early universe and the late universe. Weakly-interacting dark matter yields the observed dark matter relic density and is consistent with large-scale structure formation; however, there is strong astrophysical evidence in favor of the idea that dark matter has large self-interactions. The first part of this thesis presents two models in which the nature of dark matter fundamentally changes as the universe evolves. In the first model, the dark matter mass and couplings depend on the value of a chameleonic scalar field that changes as the universe expands. In the second model, dark matter is charged under a hidden SU(N) gauge group and eventually undergoes confinement. These models introduce very different mechanisms to explain the separation between the physics relevant for freezeout and for small-scale dynamics.
As the universe continues to evolve, it will asymptote to a de Sitter vacuum phase. Since there is a finite temperature associated with de Sitter space, the universe is typically treated as a thermal system, subject to rare thermal fluctuations, such as Boltzmann brains. The second part of this thesis begins by attempting to escape this unacceptable situation within the context of known physics: vacuum instability induced by the Higgs field. The vacuum decay rate competes with the production rate of Boltzmann brains, and the cosmological measures that have a sufficiently low occurrence of Boltzmann brains are given more credence. Upon further investigation, however, there are certain situations in which de Sitter space settles into a quiescent vacuum with no fluctuations. This reasoning not only provides an escape from the Boltzmann brain problem, but it also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere during slow-roll inflation, suggesting that eternal inflation is much less common than often supposed. Instead, decoherence occurs during reheating, so this analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation.
Resumo:
In this article, pathways from freshwater and marine environments are described. DOM is defined operationally as all the organic compounds which pass through a filter of pore size 0.45 microm., those retained on the surface of the filter being particulate organic matter (POM). DOM can be taken up directly by animals by transfer across the body wall, but more commonly DOM is obtained from ingested food. Once ingested POM from food particles are broken down in the gut, small molecules of DOM are released for transfer across the gut wall. Some ingested particles are attacked by micro-organisms living in the gut, thereby making the DOM available to the host animal. The importance of the microbial loop is discussed, as well as aggregation processes between the fractions of DOM which are more obviously particulate in nature. (DBO)
Resumo:
Changes in sustainability of aquatic ecosystems are likely to be brought about by the global warming that has been widely predicted. In this article, the effects of water temperature on water-bodies (lakes, oceans and rivers) are reviewed followed by the effects of temperature on aquatic organisms. Almost all aquatic organisms require exogenous heat before they can metabolise efficiently. An organism that is adapted to warm temperatures will have a higher rate of metabolism of food organisms and this increases feeding rate. In addition, an increase in temperature raises the metabolism of food organisms, so food quality can be altered. Where populations have a different tolerance to temperature the result is habitat partitioning. One effect of prolonged high temperature is that it causes water to evaporate readily. In the marine littoral this is not an important problem as tides will replenish water in pools. Small rain pools are found in many tropical countries during the rainy season and these become incompletely dried at intervals. The biota of such pools must have resistant stages within the life cycle that enable them to cope with periods of drying. The most important potential effects of global warming include (i) the alteration of existing coastlines, (ii) the development of more deserts on some land masses, (iii) higher productivity producing higher crop production but a greater threat of algal blooms and (iv) the processing of organic matter at surface microlayers.
Resumo:
We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam.
Resumo:
The intensities and relative abundances of galactic cosmic ray protons and antiprotons have been measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. The IMAX payload had a successful flight from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified by mass and charge via the Cherenkov-Rigidity and TOP-Rigidity techniques, with measured rms mass resolution ≤0.2 amu for Z=1 particles.
Cosmic ray antiprotons are of interest because they can be produced by the interactions of high energy protons and heavier nuclei with the interstellar medium as well as by more exotic sources. Previous cosmic ray antiproton experiments have reported an excess of antiprotons over that expected solely from cosmic ray interactions.
Analysis of the flight data has yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons in the energy range 0.97-2.58 GeV, and 22524 protons and 5 antiprotons in the energy range 2.58-3.08 GeV. These measurements are a statistical improvement over previous antiproton measurements, and they demonstrate improved separation of antiprotons from the more abundant fluxes of protons, electrons, and other cosmic ray species.
When these results are corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p=3.21(+3.49, -1.97)x10^(-5) in the energy range 0.25-1.00 GeV, p/p=5.38(+3.48, -2.45) x10^(-5) in the energy range 1.00-2.61 GeV, and p/p=2.05(+1.79, -1.15) x10^(-4) in the energy range 2.61-3.11 GeV. The corresponding antiproton intensities, also corrected to the top of the atmosphere, are 2.3(+2.5, -1.4) x10^(-2) (m^2 s sr GeV)^(-1), 2.1(+1.4, -1.0) x10^(-2) (m^2 s sr GeV)^(-1), and 4.3(+3.7, -2.4) x10^(-2) (m^2 s sr GeV)^(-1) for the same energy ranges.
The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations of the cosmic ray antiproton abundance. According to this model, cosmic ray antiprotons are secondary cosmic rays arising solely from the interaction of high energy cosmic rays with the interstellar medium. The effects of solar modulation of protons and antiprotons are also calculated, showing that the antiproton/proton ratio can vary by as much as an order of magnitude over the solar cycle. When solar modulation is taken into account, the IMAX antiproton measurements are found to be consistent with the most recent calculations of the SLBM. No evidence is found in the IMAX data for excess antiprotons arising from the decay of galactic dark matter, which had been suggested as an interpretation of earlier measurements. Furthermore, the consistency of the current results with the SLBM calculations suggests that the mean antiproton lifetime is at least as large as the cosmic ray storage time in the galaxy (~10^7 yr, based on measurements of cosmic ray ^(10)Be). Recent measurements by two other experiments are consistent with this interpretation of the IMAX antiproton results.