876 resultados para dS vacua in string theory
Resumo:
Based on the equivalence between a gauge theory for the translation group and general relativity, a teleparallel version of the non-Abelian Kaluza-Klein theory is constructed. In this theory, only the fiber-space turns out to be higher dimensional, spacetime being kept always four dimensional. The resulting model is a gauge theory that unifies, in the Kaluza-Klein sense, gravitational and gauge fields. In contrast with the ordinary Kaluza-Klein models, this theory defines a natural length scale for the compact submanifold of the fiber space, which is shown to be of the order of the Planck length.
Resumo:
In this article, the multiloop amplitude prescription using the super-Poincare invariant pure spinor formalism for the superstring is reviewed. Unlike the RNS prescription, there is no sum over spin structures and surface terms coming from the boundary of moduli space can be ignored. Massless N-point multiloop amplitudes vanish for N < 4, which implies (with two mild assumptions) the perturbative finiteness of superstring theory. Also, R-4 terms receive no multiloop contributions in agreement with the Type IIB S-duality conjecture of Green and Gutperle. (c) 2005 Published by Elsevier SAS on behalf of Academie des sciences.
Resumo:
We consider pion interactions in an effective field theory of the narrow resonance X(3872), assuming it is a weakly bound molecule of the charm mesons D-0(D) over bar (*0) and D-*0(D) over bar (0). Since the hyperfine splitting of the D-0 and D-*0 is only 7 MeV greater than the neutral pion mass, pions can be produced near threshold and are nonrelativistic. We show that pion exchange can be treated in perturbation theory and calculate the next-to-leading-order correction to the partial decay width Gamma[X -> D-0(D) over bar (0)pi(0)].
Resumo:
We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincare covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS(5) x S-5 is explicitly constructed.
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A análise isotópica tem se mostrado uma ferramenta de suma importância ao processo de rastreabilidade, no entanto, existem divergências nas análises estatísticas dos resultados, uma vez que os dados são dependentes e advindos de vários elementos químicos tais como Carbono, Hidrogênio, Oxigênio, Nitrogênio e Enxofre (CHON'S). Com o intuito de estabelecer a análise propícia para os dados de rastreabilidade em aves pela técnica de isótopos estáveis e avaliar a necessidade da análise conjunta das variáveis, foram usados dados de carbono-13 e de nitrogênio-15 de ovos (albúmen + gema) de poedeiras e músculo peitoral de frangos de corte, os quais foram submetidos à análise estatística univariada (Anova e complementada pelo teste de Tukey) e multivariada (Manova e Discriminante). Os dados foram analisados no software Minitab 16, e os resultados, consolidados na teoria, confirmam a necessidade de análise multivariada, mostrando também que a análise discriminante esclarece as dúvidas apresentadas nos resultados de outros métodos de análise comparados nesta pesquisa.
Resumo:
Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T = T(v) not-equal 0 and that the numerical value of this T(v) depends on the nature of the meson. The average thermal energy of mesons goes linearly with T near T(v), with much smaller slope for the pion. The T(v) - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy-ion collision at mid-rapidity. It would be interesting to check the presence of different T(v) - s in present day finite T lattice theory.
Resumo:
Vertex corrections are taken into account in the Schwinger-Dyson equation for the nucleon propagator in a relativistic field theory of fermions and mesons. The usual Hartree-Fock approximation for the nucleon propagator is known to produce the appearance of complex (ghost) poles which violate basic theorems of quantum field theory. In a theory with vector mesons there are vertex corrections that produce a strongly damped vertex function in the ultraviolet. One set of such corrections is known as the Sudakov form factor in quantum electrodynamics. When the Sudakov form factor generated by massive neutral vector mesons is included in the Hartree-Fock approximation to the Schwinger-Dyson equation for the nucleon propagator, the ghost poles disappear and consistency with basic requirements of quantum field theory is recovered.
Resumo:
Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.
Resumo:
We show that for the pion-nucleon theory the thermal bubble graph is analytic at the origin of the momentum-frequency space, although the internal propagators in the loop have the same mass. This means that, for this theory, the thermal effective potential is uniquely defined. We then examine how a slight modification of the interaction term results in a theory for which the thermal bubble graph displays the usual nonanalyticity at the origin and the thermal effective potential is not uniquely defined.
Resumo:
The methods of effective field theory are used to explore the theoretical and phenomenological aspects of the torsion field. The spinor action coupled to the electromagnetic field and torsion possesses an additional softly broken gauge symmetry. This symmetry enables one to derive the unique form of the torsion action compatible with unitarity and renormalizability. It turns out that the antisymmetric torsion field is equivalent to a massive axial vector field. The introduction of scalars leads to serious problems which are revealed after the calculation of the leading two-loop divergences. Thus the phenomenological aspects of torsion may be studied only for the fermion-torsion systems. In this part of the paper we obtain upper bounds for the torsion parameters using present experimental data on forward-backward Z-pole asymmetries, data on the experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and also TEVATRON limits on the cross section of a new gauge boson, which could be produced as a resonance at high energy pp collisions. The present experimental data enable one to put limits on the torsion parameters for the various ranges of the torsion mass. We emphasize that for a torsion mass of the order of the Planck mass no independent theory for torsion is possible, and one must directly use string theory. © 1999 Elsevier Science B.V.
Resumo:
Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.
Resumo:
Using arguments based on BRST cohomology, the pure spinor formalism for the superstring in an AdS 5×S 5 background is proven to be BRST invariant and conformally invariant at the quantum level to all orders in perturbation theory. Cohomology arguments are also used to prove the existence of an infinite set of non-local BRST-invariant charges at the quantum level. © SISSA 2005.