944 resultados para cell lung-cancer
Resumo:
BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.
Resumo:
The aim of this study was to determine the influence of comorbidity on outcome after pulmonary resection in patients over 75 years old. Three hundred and thirty-three patients with non-small-cell lung cancer operated on between 1998 and 2002 were divided into 3 age groups: < 60 years (group 1), 60-75 years (group 2), > 75 years (group 3). Overall operative mortality was 0.3%; 30-day mortality was 1%. There were more major complications with re-operation in groups 1 and 2, but minor complications occurred significantly more frequently in group 3 (36% vs 16%). Overall mean hospital stay was 12 days, with no significant difference among groups. Three-year survival rates were: 80%, 70%, and 65% in groups 1, 2, and 3, respectively, with no significant difference among groups. Age or the presence of comorbidity should not be considered contraindications for lung resection. With proper patient selection and careful preoperative evaluation, many major complications after pneumonectomy are avoidable.
Resumo:
Small cell lung cancer (SCLC) is characterized by an aggressive phenotype and acquired resistance to a broad spectrum of anticancer agents. TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising candidate for safe and selective induction of tumor cell apoptosis without toxicity to normal tissues. Here we report that TRAIL failed to induce apoptosis in SCLC cells and instead resulted in an up to 40% increase in proliferation. TRAIL-induced SCLC cell proliferation was mediated by extracellular signal-regulated kinase 1 and 2, and dependent on the expression of surface TRAIL-receptor 2 (TRAIL-R2) and lack of caspase-8, which is frequent in SCLC. Treatment of SCLC cells with interferon-gamma (IFN-gamma) restored caspase-8 expression and facilitated TRAIL-induced apoptosis. The overall loss of cell proliferation/viability upon treatment with the IFN-gamma-TRAIL combination was 70% compared to TRAIL-only treated cells and more than 30% compared to untreated cells. Similar results were obtained by transfection of cells with a caspase-8 gene construct. Altogether, our data suggest that TRAIL-R2 expression in the absence of caspase-8 is a negative determinant for the outcome of TRAIL-based cancer therapy, and provides the rationale for using IFN-gamma or other strategies able to restore caspase-8 expression to convert TRAIL from a pro-survival into a death ligand.
Resumo:
Bronchuscarcinoma ist the most frequent death cause with tumor patients. At time of diagnosis the stadium is often already advanced, the patient is inoperable. We present a patient (non-smoker) with polydipsia, visual troubles and polyuria. The lab results confirmed diabetes insipidus, but the following x-rays proved multiple intracerebral spots. And also multiple spots in the lungs, the mediastinum, in the liver, the coloumn and the adrenals. Histological diagnosis was non small cell lung cancer (NSCLC).
Resumo:
Positron emission tomography-computed tomography (PET-CT) has gained widespread acceptance as a staging investigation in the diagnostic workup of malignant tumours and may be used to visualize metabolic changes before the evolution of morphological changes. To make histology of PET findings without distinctive structural changes available for treatment decisions, we developed a protocol for multimodal image-guided interventions using an integrated PET-CT machine. We report our first experience in 12 patients admitted for staging and restaging of breast cancer, non-small cell lung cancer, cervical cancer, soft tissue sarcoma, and osteosarcoma. Patients were repositioned according to the findings in PET-CT and intervention was planned based on a subsequent single-bed PET-CT acquisition of the region concerned. The needle was introduced under CT guidance in a step-by-step technique and correct needle position in the centre of the FDG avid lesion was assured by repetition of a single-bed PET-CT acquisition before sampling. The metabolically active part of lesions was accurately targeted in all patients and representative samples were obtained in 92%. No major adverse effects occurred. We conclude that PET-CT guidance for interventions is feasible and may be promising to optimize the diagnostic yield of CT-guided interventions and to make metabolically active lesions without morphological correlate accessible to percutaneous interventions.
Resumo:
The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.
Resumo:
Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard imaging methods. The key to extracting function information from 4D CT is the construction of a volumetric deformation field that accurately tracks the motion of the patient's lungs during the respiratory cycle. The spatial accuracy of the displacement field directly impacts the ventilation images; higher spatial registration accuracy will result in less ventilation image artifacts and physiologic inaccuracies. Presently, a consistent methodology for spatial accuracy evaluation of the DIR transformation is lacking. Evaluation of the 4D CT-derived ventilation images will be performed to assess correlation with global measurements of lung ventilation, as well as regional correlation of the distribution of ventilation with the current clinical standard SPECT. This requires a novel framework for both the detailed assessment of an image registration algorithm's performance characteristics as well as quality assurance for spatial accuracy assessment in routine application. Finally, we hypothesize that hypo-ventilated regions, identified on 4D CT ventilation images, will correlate with hypo-perfused regions in lung cancer patients who have obstructive lesions. A prospective imaging trial of patients with locally advanced non-small-cell lung cancer will allow this hypothesis to be tested. These advances are intended to contribute to the validation and clinical implementation of CT-based ventilation imaging in prospective clinical trials, in which the impact of this imaging method on patient outcomes may be tested.
Resumo:
OBJECTIVES Molecular subclassification of non small-cell lung cancer (NSCLC) is essential to improve clinical outcome. This study assessed the prognostic and predictive value of circulating micro-RNA (miRNA) in patients with non-squamous NSCLC enrolled in the phase II SAKK (Swiss Group for Clinical Cancer Research) trial 19/05, receiving uniform treatment with first-line bevacizumab and erlotinib followed by platinum-based chemotherapy at progression. MATERIALS AND METHODS Fifty patients with baseline and 24 h blood samples were included from SAKK 19/05. The primary study endpoint was to identify prognostic (overall survival, OS) miRNA's. Patient samples were analyzed with Agilent human miRNA 8x60K microarrays, each glass slide formatted with eight high-definition 60K arrays. Each array contained 40 probes targeting each of the 1347 miRNA. Data preprocessing included quantile normalization using robust multi-array average (RMA) algorithm. Prognostic and predictive miRNA expression profiles were identified by Spearman's rank correlation test (percentage tumor shrinkage) or log-rank testing (for time-to-event endpoints). RESULTS Data preprocessing kept 49 patients and 424 miRNA for further analysis. Ten miRNA's were significantly associated with OS, with hsa-miR-29a being the strongest prognostic marker (HR=6.44, 95%-CI 2.39-17.33). Patients with high has-miR-29a expression had a significantly lower survival at 10 months compared to patients with a low expression (54% versus 83%). Six out of the 10 miRNA's (hsa-miRN-29a, hsa-miR-542-5p, hsa-miR-502-3p, hsa-miR-376a, hsa-miR-500a, hsa-miR-424) were insensitive to perturbations according to jackknife cross-validation on their HR for OS. The respective principal component analysis (PCA) defined a meta-miRNA signature including the same 6 miRNA's, resulting in a HR of 0.66 (95%-CI 0.53-0.82). CONCLUSION Cell-free circulating miRNA-profiling successfully identified a highly prognostic 6-gene signature in patients with advanced non-squamous NSCLC. Circulating miRNA profiling should further be validated in external cohorts for the selection and monitoring of systemic treatment in patients with advanced NSCLC.
Resumo:
The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.
Resumo:
Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.
Resumo:
Members of the Snail family of zinc finger transcription factors are known to play critical roles in neurogenesis in invertebrates, but none of these factors has been linked to vertebrate neuronal differentiation. We report the isolation of a gene encoding a mammalian Snail family member that is restricted to the nervous system. Human and murine Scratch (Scrt) share 81% and 69% identity to Drosophila Scrt and the Caenorhabditis elegans neuronal antiapoptotic protein, CES-1, respectively, across the five zinc finger domain. Expression of mammalian Scrt is predominantly confined to the brain and spinal cord, appearing in newly differentiating, postmitotic neurons and persisting into postnatal life. Additional expression is seen in the retina and, significantly, in neuroendocrine (NE) cells of the lung. In a parallel fashion, we detect hScrt expression in lung cancers with NE features, especially small cell lung cancer. hScrt shares the capacity of other Snail family members to bind to E-box enhancer motifs, which are targets of basic helix–loop–helix (bHLH) transcription factors. We show that hScrt directly antagonizes the function of heterodimers of the proneural bHLH protein achaete-scute homolog-1 and E12, leading to active transcriptional repression at E-box motifs. Thus, Scrt has the potential to function in newly differentiating, postmitotic neurons and in cancers with NE features by modulating the action of bHLH transcription factors critical for neuronal differentiation.
Resumo:
We have attempted to model human metastatic disease by implanting human target organs into the immunodeficient C.B-17 scid/scid (severe combined immunodeficiency; SCID) mouse, creating SCID-hu mice. Preferential metastasis to implants of human fetal lung and human fetal bone marrow occurred after i.v. injection of human small cell lung cancer (SCLC) cells into SCID-hu mice; the homologous mouse organs were spared. Clinically more aggressive variant SCLC cells metastasized more efficiently to human fetal lung implants than did cells from classic SCLC. Metastasis of variant SCLC to human fetal bone marrow was enhanced in SCID-hu mice exposed to gamma-irradiation or to interleukin 1 alpha. These data indicate that the SCID-hu mice may provide a model in which to study species- and tissue-specific steps of the human metastatic process.
Resumo:
La diagnosi di neoplasia epiteliale maligna polmonare è legata tradizionalmente alla distinzione tra carcinoma a piccole cellule (small-cell lung cancer, SCLC) e carcinoma non-a piccole cellule del polmone (non-small-cell lung cancer, NSCLC). Nell’ambito del NSCLC attualmente è importante di-stinguere l’esatto istotipo (adenocarcinoma, carcinoma squamocellulare e carcinoma neuroendocrino) perchè l’approccio terapeutico cambia a seconda dell’istotipo del tumore e la chemioterapia si dimostra molto spesso inefficace. Attualmente alcuni nuovi farmaci a bersaglio molecolare per il gene EGFR, come Erlotinib e Gefitinib, sono utilizzati per i pazienti refrattari al trattamento chemioterapico tradizionale, che non hanno risposto a uno o più cicli di chemioterapia o che siano progrediti dopo questa. I test per la rilevazione di specifiche mutazioni nel gene EGFR permettono di utilizzare al meglio questi nuovi farmaci, applicandoli anche nella prima linea di trattamento sui pazienti che hanno una maggiore probabilità di risposta alla terapia. Sfortunatamente, non tutti i pazienti rispondono allo stesso modo quando trattati con farmaci anti-EGFR. Di conseguenza, l'individuazione di biomarcatori predittivi di risposta alla terapia sarebbe di notevole importanza per aumentare l'efficacia dei questi farmaci a target molecolare e trattare con farmaci diversi i pazienti che con elevata probabilità non risponderebbero ad essi. I miRNAs sono piccole molecole di RNA endogene, a singolo filamento di 20-22 nucleotidi che svolgono diverse funzioni, una delle più importanti è la regolazione dell’espressione genica. I miRNAs possono determinare una repressione dell'espressione genica in due modi: 1-legandosi a sequenze target di mRNA, causando così un silenziamento del gene (mancata traduzione in proteina), 2- causando la degradazione dello specifico mRNA. Lo scopo della ricerca era di individuare biomarcatori capaci di identificare precocemente i soggetti in grado di rispondere alla terapia con Erlotinib, aumentando così l'efficacia del farmaco ed evitan-do/riducendo possibili fenomeni di tossicità e il trattamento di pazienti che probabilmente non ri-sponderebbero alla terapia offrendo loro altre opzioni prima possibile. In particolare, il lavoro si è fo-calizzato sul determinare se esistesse una correlazione tra la risposta all'Erlotinib ed i livelli di espressione di miRNAs coinvolti nella via di segnalazione di EGFR in campioni di NSCLC prima dell’inizio della terapia. Sono stati identificati 7 microRNA coinvolti nel pathway di EGFR: miR-7, -21, 128b, 133a, -133b, 146a, 146b. Sono stati analizzati i livelli di espressione dei miRNA mediante Real-Time q-PCR in campioni di NSCLC in una coorte di pazienti con NSCLC metastatico trattati con Erlotinib dal 1° gennaio 2009 al 31 dicembre 2014 in 2°-3° linea dopo fallimento di almeno un ciclo di chemioterapia. I pazienti sottoposti a trattamento con erlotinib per almeno 6 mesi senza presentare progressione alla malattia sono stati definiti “responders” (n=8), gli altri “non-responders” (n=25). I risultati hanno mostrato che miR-7, -133b e -146a potrebbero essere coinvolti nella risposta al trat-tamento con Erlotinib. Le indagini funzionali sono state quindi concentrate su miR-133b, che ha mo-strato la maggiore espressione differenziale tra i due gruppi di pazienti. E 'stata quindi studiata la capacità di miR-133b di regolare l'espressione di EGFR in due linee di cellule del cancro del polmone (A549 e H1299). Sono stati determinati gli effetti di miR-133b sulla crescita cellulare. E’ stato anche analizzato il rapporto tra miR-133b e sensibilità a Erlotinib nelle cellule NSCLC. L'aumento di espressione di miR-133b ha portato ad una down-regolazione del recettore di EGF e del pathway di EGFR relativo alla linea cellulare A549. La linea cellulare H1299 era meno sensibili al miR-133b up-regulation, probabilmente a causa dell'esistenza di possibili meccanismi di resistenza e/o di com-pensazione. La combinazione di miR-133b ed Erlotinib ha aumentato l'efficacia del trattamento solo nella linea cellulare A549. Nel complesso, questi risultati indicano che miR-133b potrebbe aumentare / ripristinare la sensibilità di Erlotinib in una frazione di pazienti.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Objective To determine the pharmacokinetics of doxorubicin in sulphur-crested cockatoos, so that its use in clinical studies in birds can be considered. Design A pharmacokinetic study of doxorubicin, following a single intravenous (IV) infusion over 20 min, was performed in four healthy sulphur-crested cockatoos (Cacatua galerita). Procedure Birds were anaesthetised and both jugular veins were cannulated, one for doxorubicin infusion and the other for blood collection. Doxorubicin hydrochloride (2 mg/kg) in normal saline was infused IV over 20 min at a constant rate. Serial blood samples were collected for 96 h after initiation of the infusion. Plasma doxorubicin concentrations were assayed using an HPLC method involving ethyl acetate extraction, reverse-phase chromatography and fluorescence detection. The limit of quantification was 20 ng/mL. Established non-parametric methods were used for the analysis of plasma doxorubicin data. Results During the infusion the mean +/- SD for the C-max of doxorubicin was 4037 +/- 2577 ng/mL. Plasma concentrations declined biexponentially immediately after the infusion was ceased. There was considerable intersubject variability in all pharmacokinetic variables. The terminal (beta-phase) half-life was 41.4 +/- 18.5 min, the systemic clearance (Cl) was 45.7 +/- 18.0 mL/min/kg, the mean residence time (MRT) was 4.8 +/- 1.4 min, and the volume of distribution at steady state (V-SS) was 238 131 mL/kg. The extrapolated area under the curve (AUC(0-infinity)) was 950 +/- 677 ng/mL.h. The reduced metabolite, doxorubicinol, was detected in the plasma of all four parrots but could be quantified in only one bird with the profile suggesting formation rate-limited pharmacokinetics of doxorubicinol. Conclusions and clinical relevance Doxorubicin infusion in sulphur-crested cockatoos produced mild, transient inappetence. The volume of distribution per kilogram and terminal half-life were considerably smaller, but the clearance per kilogram was similar to or larger than reported in the dog, rat and humans. Traces of doxorubicinol, a metabolite of doxorubicin, were detected in the plasma.