977 resultados para cell cycle checkpoint


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell proliferation and migration in the intestinal crypts, and cell migration in the villus are controlled by different mechanisms in adult rats. In the present study, weanling rats and fasting rats were used to quantitatively study the correlation of cell cycle parameters and epithelial cell migration in crypts and intestinal villi. Eighteen-day-old rats received a single injection of tritiated thymidine [3H]TdR (23:00 h); half of the pups were submitted to fasting 5 h earlier. Cell proliferation was determined in radioautographs of jejunal crypts, on the basis of the labeling indices (LI) taken 1, 8, 13 and 19 h after [3H]TdR. The results showed that the labeling index did not differ 1 h or 19 h after [3H]TdR between the fed (38.7% or 48%) and fasting groups (34.6% or 50.4%). The modified method of grain count halving indicated that cell cycle time did not differ between fed (16.5 h) and fasting rats (17.8 h); the growth fraction, however, had lower values in fasting (59%) than in fed rats (77%). Cell migration in the crypt, estimated by the LI obtained for each cell position, did not change with treatment. As for the villi, the cell migration rate was significantly retarded by 3 cell positions (8%). These results suggest that the cell migration in the villi of weanling pups does not depend directly on the cell proliferation and migration in the intestinal crypt, but is directly affected by the absence of food in the lumen

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1) and the mutant type deficient in xylosyltransferase (CHO-745). The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5))()and CHO-745 (2 x 10(5) and 5 x 10(5)) cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The c-myc protein is known to regulate the cell cycle, and its down-regulation can lead to cell death by apoptosis. The role of c-myc protein as an independent prognostic determinant in cervical cancer is controversial. In the present study, a cohort of 220 Brazilian women (mean age 53.4 years) with FIGO stage I, II and III (21, 28 and 51%, respectively) cervical squamous cell carcinomas was analyzed for c-myc protein expression using immunohistochemistry. The disease-free survival and relapse-rate were analyzed using univariate (Kaplan-Meier) survival analysis for 116 women who completed the standard FIGO treatment and were followed up for 5 years. Positive c-myc staining was detected in 40% of carcinomas, 29% being grade 1, 9% grade 2, and 2% grade 3. The distribution of positive c-myc according to FIGO stage was 19% (17 women) in stage I, 33% (29) in stage II, and 48% (43) in stage III of disease. During the 60-month follow-up, disease-free survival in univariate (Kaplan-Meier) survival analysis (116 women) was lower for women with c-myc-positive tumors, i.e., 60.5, 47.5 and 36.6% at 12, 36, and 60 months, respectively (not significant). The present data suggest that immunohistochemical demonstration of c-myc does not possess any prognostic value independent of FIGO stage, and as such is unlikely to be a useful prognostic marker in cervical squamous cell carcinoma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 µM - 75%), staurosporine (1 µM - 58%), R03 (1 µM - 75%), and tyrphostins B44 (100 µM - 66%) and B46 (100 µM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gastric cancer is the second most frequent type of neoplasia and also the second most important cause of death in the world. Virtually all the established cell lines of gastric neoplasia were developed in Asian countries, and western countries have contributed very little to this area. In the present study we describe the establishment of the cell line ACP01 and characterize it cytogenetically by means of in vitro immortalization. Cells were transformed from an intestinal-type gastric adenocarcinoma (T4N2M0) originating from a 48-year-old male patient. This is the first gastric adenocarcinoma cell line established in Brazil. The most powerful application of the cell line ACP01 is in the assessment of cytotoxicity. Solid tumor cell lines from different origins have been treated with several conventional and investigational anticancer drugs. The ACP01 cell line is triploid, grows as a single, non-organized layer, similar to fibroblasts, with focus formation, heterogeneous division, and a cell cycle of approximately 40 h. Chromosome 8 trisomy, present in 60% of the cells, was the most frequent cytogenetic alteration. These data lead us to propose a multifactorial triggering of gastric cancer which evolves over multiple stages involving progressive genetic changes and clonal expansion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alpha2ß1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Alternagin-C (ALT-C), a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, competitively interacts with the alpha2ß1 integrin, thereby inhibiting collagen binding. When immobilized in plate wells, ALT-C supports the adhesion of fibroblasts as well as of human vein endothelial cells (HUVEC) and does not detach cells previously bound to collagen I. ALT-C is a strong inducer of HUVEC proliferation in vitro. Gene expression analysis was done using an Affimetrix HU-95A probe array with probe sets of ~10,000 human genes. In human fibroblasts growing on collagen-coated plates, ALT-C up-regulates the expression of several growth factors including vascular endothelial growth factor, as well as some cell cycle control genes. Up-regulation of the vascular endothelial growth factor gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates protein kinase B phosphorylation, a signaling event involved in endothelial cell survival and angiogenesis. In human neutrophils, ALT-C has a potent chemotactic effect modulated by the intracellular signaling cascade characteristic of integrin-activated pathways. Thus, ALT-C acts as a survival factor, promoting adhesion, migration and endothelial cell proliferation after binding to alpha2ß1 integrin on the cell surface. The biological activities of ALT-C may be helpful as a therapeutic strategy in tissue regeneration as well as in the design of new therapeutic agents targeting alpha2ß1 integrin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Malignancy of pulmonary large cell carcinomas (LCC) increases from classic LCC through LCC with neuroendocrine morphology (LCCNM) to large cell neuroendocrine carcinomas (LCNEC). However, the histological classification has sometimes proved to be difficult. Because the malignancy of LCC is highly dependent on proteins with functions in the cell cycle, DNA repair, and apoptosis, p53 has been targeted as a potentially useful biological marker. p53 mutations in lung cancers have been shown to result in expression and protein expression also occurs in the absence of mutations. To validate the importance of both p53 protein expression (by immunostaining) and p53 gene mutations in lung LCC (by PCR-single strand conformational polymorphism analysis of exons 5, 6, 7, and 8) and to study their relationships with clinical factors and sub-classification we investigated the correlation of p53 abnormalities in 15 patients with LCC (5 classic LCC, 5 LCNEC, and 5 LCCNM) who had undergone resection with curative intent. Of these patients, 5/15 expressed p53 and none had mutant p53 sequences. There was a negative survival correlation with positive p53 immunostaining (P = 0.05). After adjustment for stage, age, gender, chemotherapy, radiotherapy, and histological subtypes by multivariate analysis, p53 expression had an independent impact on survival. The present study indicates that p53 assessment may provide an objective marker for the prognosis of LCC irrespective of morphological variants and suggests that p53 expression is important for outcome prediction in patients with the early stages of LCC. The results reported here should be considered to be initial results because tumors from only 15 patients were studied: 5 each from LCC, LCNEC and LCCNM. This was due to the rarity of these specific diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular functions of the non-cell cycle-related Cyclin-dependent kinase 5 (Cdk5) have been of primary interest within the neuroscience field, but novel undertakings are constantly emerging for the kinase in tissue homeostasis, as well as in diseases such as diabetes and cancer. Although Cdk5 activation is predominantly regulated by specific non-cyclin activator protein binding, additional mechanisms have proved to orchestrate Cdk5 signaling in cells. For example, the interaction between the intermediate filament protein nestin and Cdk5 has been proposed to determine cellular fate during neuronal apoptosis through nestin-dependent adjustment of the sensitive balance and turnover of Cdk5 activators. While nestin constitutes a crucial regulatory scaffold for appropriate Cdk5 activation in apoptosis, Cdk5 itself phosphorylates nestin with the consequence of filament reorganization in both neuronal progenitors and differentiating muscle cells. Interestingly, the two proteins are often found coexpressed in various tissues and cell types, proposing that nestin-mediated scaffolding of Cdk5 and its activators may be applicable to other tissue systems as well. In the literature, the molecular functions of nestin have remained in the shade, as it is mostly exploited as a marker protein for progenitor cells. In light of these studies, the aim of this thesis was to assess the importance of the nestin scaffold in regulation of Cdk5 actions in cell fate decisions. This thesis can be subdivided into two major projects: one that studied the nature of the Cdk5-nestin interplay in muscle, and one that assessed their role in prostate cancer. During differentiation of a myoblast cell line, the filament formation properties of nestin was found to be crucial in directing Cdk5 activity, with direct consequences on the process of differentiation. Also the genetic knockout of nestin was found to influence Cdk5 activity, although differentiation per se was not affected. Instead, the genetic ablation of nestin had broad consequences on muscle homeostasis and regeneration. While the nestin-mediated regulation of Cdk5 in muscle was found to act in multiple ways, the connection remained more elusive in cancer models. Cdk5 was, however, established as a significant determinant of prostate cancer proliferation; a behavior uncharacteristic for this differentiation-associated kinase. Through complex and simultaneous regulation of two major prostate cancer pathways, Cdk5 was placed upstream of both Akt kinase and the androgen receptor. Its action on proliferation was nonetheless mainly exerted through the Akt signaling pathway in various cancer models. In summary, this thesis contributed to the knowledge of Cdk5 regulation and functions in two atypical settings; proliferation (in a cancer framework) and muscle differentiation, which is a poorly understood model system in the Cdk5 field. This balance between proliferation and differentiation implemented by Cdk5 is ultimately regulated (where present) by the dynamics of the cytoskeletal nestin scaffold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We showed that guaraná (Paullinia cupana Mart var. sorbilis) had a chemopreventive effect on mouse hepatocarcinogenesis and reduced diethylnitrosamine-induced DNA damage. In the present experiment, we evaluated the effects of guaraná in an experimental metastasis model. Cultured B16/F10 melanoma cells (5 x 10(5) cells/animal) were injected into the tail vein of mice on the 7th day of guaraná treatment (2.0 mg P. cupana/g body weight, per gavage) and the animals were treated with guaraná daily up to 14 days until euthanasia (total treatment time: 21 days). Lung sections were obtained for morphometric analysis, apoptotic bodies were counted to calculate the apoptotic index and proliferating cell nuclear antigen-positive cells were counted to determine the proliferation index. Guaraná-treated (GUA) animals presented a 68.6% reduction in tumor burden area compared to control (CO) animals which were not treated with guaraná (CO: 0.84 ± 0.26, N = 6; GUA: 0.27 ± 0.24, N = 6; P = 0.0043), a 57.9% reduction in tumor proliferation index (CO: 23.75 ± 20.54, N = 6; GUA: 9.99 ± 3.93, N = 6; P = 0.026) and a 4.85-fold increase in apoptotic index (CO: 66.95 ± 22.95, N = 6; GUA: 324.37 ± 266.74 AB/mm², N = 6; P = 0.0152). In this mouse model, guaraná treatment decreased proliferation and increased apoptosis of tumor cells, consequently reducing the tumor burden area. We are currently investigating the molecular pathways of the effects of guaraná in cultured melanoma cells, regarding principally the cell cycle inhibitors and cyclins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-ß, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have demonstrated that a synthetic DNA enzyme targeting early growth response factor-1 (Egr-1) can inhibit neointimal hyperplasia following vascular injury. However, the detailed mechanism of this inhibition is not known. Thus, the objective of the present study was to further investigate potential inhibitory mechanisms. Catalytic DNA (ED5) and scrambled control DNA enzyme (ED5SCR) were synthesized and transfected into primary cultures of rat vascular smooth muscle cells (VSMCs). VSMC proliferation and DNA synthesis were analyzed by the MTT method and BrdU staining, respectively. Egr-1, TGF-β1, p53, p21, Bax, and cyclin D1 expression was detected by RT-PCR and Western blot. Apoptosis and cell cycle assays were performed by FACS. Green fluorescence could be seen localized in the cytoplasm of 70.6 ± 1.52 and 72 ± 2.73% VSMCs 24 h after transfection of FITC-labeled ED5 and ED5SCR, respectively. We found that transfection with ED5 significantly inhibited cultured VSMC proliferation in vitro after 24, 48, and 72 h of serum stimulation, and also effectively decreased the uptake of BrdU by VSMC. ED5 specifically reduced serum-induced Egr-1 expression in VSMCs, further down-regulated the expression of cyclin D1 and TGF-β1, and arrested the cells at G0/G1, inhibiting entry into the S phase. FACS analysis indicated that there was no significant difference in the rate of apoptosis between ED5- and ED5SCR-transfected cells. Thus, ED5 can specifically inhibit Egr-1 expression, and probably inhibits VSMC proliferation by down-regulating the expressions of cyclin D1 and TGF-β1. However, ED5 has no effect on VSMC apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diallyl disulfide (DADS) inhibits growth and induces cell cycle G2/M arrest in human gastric cancer MGC803 cells. In this study, 15 mg/L DADS exerted similar effects on growth and cell cycle arrest in human gastric cancer BGC823 cells. Due to the importance of cell cycle redistribution in DADS-mediated anti-carcinogenic effects, we investigated the role of checkpoint kinases (Chk1 and Chk2) during DADS-induced cell cycle arrest. We hypothesized that DADS could mediate G2/M phase arrest through either Chk1 or Chk2 signal transduction pathways. We demonstrated that DADS induced the accumulation of phosphorylated Chk1, but not of Chk2, and that DADS down-regulated Cdc25C and cyclin B1. The expression of mRNA and total protein for Chkl and Chk2 was unchanged. Chk1 is specifically phosphorylated by ATR (ATM-RAD3-related gene). Western blot analysis showed that phospho-ATR was activated by DADS. Taken together, these data suggest that cell cycle G2/M arrest, which was associated with accumulation of the phosphorylated forms of Chk1, but not of Chk2, was involved in the growth inhibition induced by DADS in the human gastric cancer cell line BGC823. Furthermore, the DADS-induced G2/M checkpoint response is mediated by Chk1 signaling through ATR/Chk1/Cdc25C/cyclin B1, and is independent of Chk2.