952 resultados para catalytic specificity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since first reported in 2005, mononuclear ruthenium water oxidation catalysts have attracted a great deal of attention due to their catalytic performance and synthetic flexibility. In particular, ligands coordinated to a Ru metal centre play an important role in the catalytic mechanisms, exhibiting significant impact on catalyst efficiency, stability and activity towards water oxidation. This review focuses on finding possible correlations between the ligand effects and activity of mononuclear Ru aqua and non-aqua complexes as water oxidation catalysts. The ligand effects highlighted in the text include the electronic nature of core ligands and their substituents, the trans–cis effect, steric hindrance and the strain effect, the net charge effect, the geometric arrangement of the aqua ligand and the supramolecular effects, e.g., hydrogen bonding and influence of a pendant base. The outcome is not always obvious at the present knowledge level. Deeper understanding of the ligand effects, based on new input data, is mandatory for further progress towards a rational development of novel catalysts featuring enhanced activity in water oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in inositol auxotrophy that can only be partially rescued by exogenous inositol. Removal of inositol supplementation from the ino1- mutant results in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis and substrate adhesion. Inositol depletion also caused a dramatic generalised decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 independent of inositol biosynthesis. To characterise this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) was identified with homology to mammalian macromolecular complex adaptor proteins. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of thyroid hormone on estrogen actions has been demonstrated both in vivo and in vitro. In transient transfection assays, the effects of liganded thyroid hormone receptors (TR) on transcriptional facilitation by estrogens bound to estrogen receptors (ER) display specificity according to the following: 1) ER isoform, 2) TR isoform, 3) the promoter through which transcriptional facilitation occurs, and 4) cell type. Some of these molecular phenomena may be related to thyroid hormone signaling of seasonal limitations upon reproduction. The various combinations of these molecular interactions provide multiple and flexible opportunities for relations between two major hormonal systems important for neuroendocrine feedbacks and reproductive behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 M(-1) s(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie similar to 12.3 angstrom apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aspartic endopeptidase was purified in our laboratory from Rhipicephalus (Boophilus) microplus eggs [Logullo, C., Vaz, I.S., Sorgine, M.H., Paiva-Silva, G.O., Faria, F.S., Zingali, R.B., De Lima, M.F., Abreu, L., Oliveira, E.F., Alves, E.W, Masuda, H., Gonzales, J.C., Masuda, A., and Oliveira, P.L., 1998. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Rhipicephalus (Boophilus) microplus. Parasitology 116, 525-532]. Boophilus yolk cathepsin (BYC) was tested as component of a protective vaccine against the tick, inducing a significant immune response in cattle [da Silva, VI., Jr., Logullo, C., Sorgine, M., Velloso, F.F., Rosa de Lima, M.F., Gonzales, J.C., Masuda, H., Oliveira, P.L., and Masuda, A., 1998. Immunization of bovines with an aspartic proteinase precursor isolated from Rhipicephalus (Boophilus) microplus eggs. Vet. Immunol. Immunopathol. 66,331-341]. In this work, BYC was cloned and its primary sequence showed high similarity with other aspartic endopeptidases. In spite of this similarity, BYC sequence shows many important differences in relation to other aspartic peptidases, the most important being the lack of the second catalytic Asp residue, considered to be essential for the catalysis of this class of endopeptidases. When we determined BYC cleavage specificity by LC-MS, we found out that it presents a preference for hydrophobic residues in P1 and P1` in accordance to most aspartic endopeptidases. Also, when analyzed by circular dicroism, BYC presented high beta sheet content, also a characteristic of aspartic endopeptidases. On the other hand, although both native and recombinant BYC are catalytically active, they present a very low specific activity, what seems to indicate that this peptidase will digest its natural substrate, vitellin, very slowly. We speculate that such a slow Vn degradative process might constitute an important strategy to preserve egg protein content to the hatching larvae. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic hydrodechlorination (HDC) reaction, which is an attractive abatement process for chlorinated organic wastes, was studied over a magnetically recoverable supported Pd(0) catalyst. We investigated the most favorable reaction conditions under which to obtain the highest substrate conversion rates while preserving the catalyst properties and morphology. Sodium hydroxide, triethylamine and buffered solutions were used as proton scavengers in the HDC of chlorobenzene under mild conditions. It was observed that sodium hydroxide caused corrosion of the silica support, triethylamine in 2-propanol preserved the morphology of the catalyst which could be recycled for up to five successive H DC reactions, and aqueous buffer solutions preserved the catalyst morphology and the catalytic activity for up to four successive HDC reactions. The use of buffer solutions to neutralize the HCl formed during the HDC reaction is an interesting, less aggressive, alternative approach to HDC reactions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We here report the first magnetically recoverable Rh(0) nanoparticle-supported catalyst with extraordinary recovery and recycling properties. Magnetic separation has been suggested as a very promising technique to improve recovery of metal-based catalysts in liquid-phase batch reactions. The separation method is significantly simple, as it does not require filtration, decantation, centrifugation, or any other separation technique thereby, overcoming traditional time- and solvent-consuming procedures. Our new magnetically separable catalytic system, comprised of Rh nanoparticles immobilized on silica-coated magnetite nanoparticles, is highly active and could be reused for up to 20 times for hydrogenation of cyclohexene (180,000 mol/mol(Rh)) and benzene (11,550 mol/mol(Rh) under mild conditions. (c) 2007 Elsevier B. V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.