972 resultados para cannabinoid 1 receptor
Resumo:
Mutations of G protein-coupled receptors (GPCR) can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis, others occur spontaneously in human diseases. The alpha(1B)adrenoceptor was the first GPCR in which point mutations were shown to trigger receptor activation. This article briefly summarizes some of the findings reported in the last several years on constitutive activity of the alpha(1)adrenoceptor subtypes, the location where mutations have been found in the receptors, the spontaneous activity of native receptors in recombinant as well as physiological systems. In addition, it will highlight how the analysis of the pharmacological and molecular properties of the constitutively active adrenoceptor mutants provided an important contribution to our understanding of the molecular mechanisms underlying the mechanism of receptor activation and inverse agonism.
Insulin and insulin-like growth factor I receptors utilize different G protein signaling components.
Resumo:
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.
Resumo:
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is a progressive white matter disease with a wide range of clinical symptoms including dementia, behavioral changes, seizures, pyramidal signs, ataxia, and parkinsonism.(1-3) Affected individuals develop symptoms in their early 40s with an average survival time of 10 years. HDLS is inherited as an autosomal dominant trait. Recently, mutations in the colony-stimulating factor 1 receptor gene (CSF-1R) were identified as the genetic cause of HDLS.(4) White matter lesions, easily demonstrated on MRI studies, involve predominantly the frontal lobes and corpus callosum with subsequent cortical atrophy. MRI abnormalities are present prior to symptom onset.(5,6) Histopathology shows widespread myelin and axon destruction with axonal dilations termed spheroids, as well as pigmented macrophages.
Resumo:
OBJECTIVE: Pigmented orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) are rare neurodegenerative disorders characterized by cerebral white matter abnormalities, myelin loss, and axonal swellings. The striking overlap of clinical and pathologic features of these disorders suggested a common pathogenesis; however, no genetic or mechanistic link between POLD and HDLS has been established. Recently, we reported that mutations in the colony-stimulating factor 1 receptor (CSF1R) gene cause HDLS. In this study, we determined whether CSF1R mutations are also a cause of POLD. METHODS: We performed sequencing of CSF1R in 2 pathologically confirmed POLD families. For the largest family (FTD368), a detailed case report was provided and brain samples from 2 affected family members previously diagnosed with POLD were re-evaluated to determine whether they had HDLS features. In vitro functional characterization of wild-type and mutant CSF1R was also performed. RESULTS: We identified CSF1R mutations in both POLD families: in family 5901, we found c.2297T>C (p.M766T), previously reported by us in HDLS family CA1, and in family FTD368, we identified c.2345G>A (p.R782H), recently reported in a biopsy-proven HDLS case. Immunohistochemical examination in family FTD368 showed the typical neuronal and glial findings of HDLS. Functional analyses of CSF1R mutant p.R782H (identified in this study) and p.M875T (previously observed in HDLS), showed a similar loss of CSF1R autophosphorylation of selected tyrosine residues in the kinase domain for both mutations when compared with wild-type CSF1R. CONCLUSIONS: We provide the first genetic and mechanistic evidence that POLD and HDLS are a single clinicopathologic entity.
Resumo:
Photosynthetic tissues, the major food source of many invertebrates and vertebrates, are well defended. Many defence traits in leaves are controlled via the jasmonate signalling pathway in which jasmonate acts as a hormone by binding to a receptor to activate responses that lead to increased resistance to invertebrate folivores. We predicted that mutations in jasmonate synthesis might also increase the vulnerability of leaves to vertebrate folivores and tested this hypothesis using the Eastern Hermann's tortoise (Eurotestudo boettgeri) and an Arabidopsis thaliana (Brassicaceae) allene oxide synthase (aos) mutant unable to synthesize jasmonate. Tortoises preferred the aos mutant over the wild type (WT). Based on these results, we then investigated the effect of mutating jasmonate perception using a segregating population of the recessive A. thaliana jasmonate receptor mutant coronatine insensitive1-1 (coi1-1). Genotyping of these plants after tortoise feeding revealed that the homozygous coi1-1 receptor mutant was consumed more readily than the heterozygous mutant or the WT. Therefore, the plant's ability to synthesize or perceive jasmonate reduces feeding by a vertebrate herbivore. We also tested whether or not tortoise feeding behaviour was influenced by glucosinolates, the principal defence chemicals in Arabidopsis leaves with known roles in defence against many generalist insects. However, in contrast to what has been observed with such insects, leaves in which the levels of these compounds were reduced genetically were consumed at a similar rate to those of the WT.
Resumo:
The melanocortin system is implicated in the expression of many phenotypic traits. Activation of the melanocortin MC(1) receptor by melanocortin hormones induces the production of brown/black eumelanic pigments, while activation of the four other melanocortin receptors affects other physiological and behavioural functions including stress response, energy homeostasis, anti-inflammatory and sexual activity, aggressiveness and resistance to oxidative stress. We recently proposed the hypothesis that some melanocortin-physiological and -behavioural traits are correlated within individuals. This hypothesis predicts that the degree of eumelanin production may, in some cases, be associated with the regulation of glucocorticoids, immunity, resistance to oxidative stress, energy homeostasis, sexual activity, and aggressiveness. A review of the zoological literature and detailed experimental studies in a free-living population of barn owls (Tyto alba) showed that indeed melanic coloration is often correlated with the predicted physiological and behavioural traits. Support for predictions of the hypothesis that covariations between coloration and other phenotypic traits stem from pleiotropic effects of the melanocortin system raises a number of theoretical and empirical issues from evolutionary and pharmacological point of views.
Resumo:
AIMS: Connexins (Cxs) play a role in the contractility of the aorta wall. We investigated how connexins of the endothelial cells (ECs; Cx37, Cx40) and smooth muscle cells (SMCs; Cx43, Cx45) of the aorta change during renin-dependent and -independent hypertension. METHODS AND RESULTS: We subjected both wild-type (WT) mice and mice lacking Cx40 (Cx40(-/-)), to either a two-kidney, one-clip procedure or to N-nitro-l-arginine-methyl-ester treatment, which induce renin-dependent and -independent hypertension, respectively. All hypertensive mice featured a thickened aortic wall, increased levels of Cx37 and Cx45 in SMC, and of Cx40 in EC (except in Cx40(-/-) mice). Cx43 was up-regulated, with no effect on its S368 phosphorylation, only in the SMCs of renin-dependent models of hypertension. Blockade of the renin-angiotensin system of Cx40(-/-) mice normalized blood pressure and prevented both aortic thickening and Cx alterations. Ex vivo exposure of WT aortas, carotids, and mesenteric arteries to physiologically relevant levels of angiotensin II (AngII) increased the levels of Cx43, but not of other Cx. In the aortic SMC line of A7r5 cells, AngII activated kinase-dependent pathways and induced binding of the nuclear factor-kappa B (NF-kappaB) to the Cx43 gene promoter, increasing Cx43 expression. CONCLUSION: In both large and small arteries, hypertension differently regulates Cx expression in SMC and EC layers. Cx43 is selectively increased in renin-dependent hypertension via an AngII activation of the extracellular signal-regulated kinase and NF-kappaB pathways.
Resumo:
BACKGROUND: The intestinal epithelium accommodates with a myriad of commensals to maintain immunological homeostasis, but the underlying mechanisms regulating epithelial responsiveness to flora-derived signals remain poorly understood. Herein, we sought to determine the role of the Toll/interleukin (IL)-1 receptor regulator Toll-interacting protein (Tollip) in intestinal homeostasis. METHODS: Colitis susceptibility was determined after oral dextran sulfate sodium (DSS) administration or by breeding Tollip on an IL-10 background. The intestinal flora was depleted with 4 antibiotics before DSS exposure to assess its contribution in colitis onset. Bone marrow chimeras were generated to identify the cellular compartment, whereby Tollip may negatively regulate intestinal inflammation in response to DSS. Tollip-dependent epithelial barrier functions were studied in vitro by using Tollip-knockdown in Caco-2 cells and in vivo by immunohistochemistry and fluorescein isothiocyanate-labeled dextran gavage. RESULTS: Genetic ablation of Tollip did not lead to spontaneous intestinal inflammatory disorders. However, Tollip deficiency aggravated spontaneous disease onset in IL-10 mice and increased susceptibility to DSS colitis. Increased colitis severity in Tollip-deficient mice was not improved by bacterial flora depletion using broad-spectrum antibiotics. In addition, DSS exposure of bone marrow chimeric mice revealed a protective role for Tollip in nonhematopoietic cells. Knockdown of Tollip in epithelial cells led to exaggerated NFκ-B activity and proinflammatory cytokine secretion. Finally, DSS-treated Tollip mice showed enhanced intestinal permeability and increased epithelial apoptosis when compared with wild-type controls, a finding that coincided with tight junction alterations on injury. CONCLUSION: Overall, our data show an essential role for Tollip on colitis susceptibility in mice.
Resumo:
BACKGROUND: Sensing of bacterial products via Toll-like receptors is critical to maintain gut immune homeostasis. The Toll-Interacting Protein (Tollip) inhibits downstream signaling through the IL-1 receptor, TLR-2 and TLR-4. Here,we aimed to address the role of Tollip in acute and chronic inflammatory responses in the gut. MATERIAL AND METHODS: WT or Tollip-deficient mice were exposed to dextran sulfate sodium (DSS) 1.5% in the drinking water during 7 days. To generate bone-marrow chimeras, WT or Tollip deficient mice were 900-rads irradiated, transplanted with WT or Tollip deficient bone-marrow cells and challenged with DSS 2-3 months after transplantation. IL-10 deficient mice were bred with Tollip deficient mice and colitis was compared at various time points. RESULTS: Upon DSS exposure, Tollip-deficient mice had increased body weight loss and increased pro-inflammatory cytokine expression compared to WT controls. Challenge of bone-marrow chimeras showed that colitis susceptibility was also increased when Tollip deficiency was restricted to non-hematopoietic cells. DSS-exposure lead to a disorganized distribution of zona-occludens-1, a tight junction marker and increased number of apoptotic, cleaved caspase 3 positive, epithelial cells in Tollip-deficient compared to WT mice. Chronic colitis was also affected by Tollip deficiency as Tollip/IL-10 deficient mice had more severe histological stigmata of colitis and higher IL-17 expression than IL-10 deficient controls. CONCLUSION: Tollip in non-hematopoietic cells is critical for adequate response to a chemical-induced stress in the gut and to hamper chronic bacteria-driven colitis. Modulation of epithelial cell integrity via Tollip likely contributes to the observed defects.
Resumo:
Several studies have demonstrated that mice are polymorphic for the number of renin genes, with some inbred strains harboring one gene (Ren-1(c)) and other strains containing two genes (Ren-1(d) and Ren-2). In this study, the effects of 1% salt and deoxycorticosterone acetate (DOCA)/salt were investigated in one- and two-renin gene mice, for elucidation of the role of renin in the modulation of BP, cardiac, and renal responses to salt and DOCA. The results demonstrated that, under baseline conditions, mice with two renin genes exhibited 10-fold higher plasma renin activity, 100-fold higher plasma renin concentrations, elevated BP (which was angiotensin II-dependent), and an increased cardiac weight index, compared with one-renin gene mice (all P < 0.01). The presence of two renin genes markedly increased the BP, cardiac, and renal responses to salt. The number of renin genes also modulated the responses to DOCA/salt. In one-renin gene mice, DOCA/salt induced significant renal and cardiac hypertrophy (P < 0.01) even in the absence of any increase in BP. Treatment with losartan, an angiotensin II AT(1) receptor antagonist, decreased BP in two-renin gene mice but not in one-renin gene mice. However, losartan prevented the development of cardiac hypertrophy in both groups of mice. In conclusion, these data demonstrate that renin genes are important determinants of BP and of the responses to salt and DOCA in mice. The results confirm that the Ren-2 gene, which controls renin production mainly in the submaxillary gland, is physiologically active in mice and is not subject to the usual negative feedback control. Finally, these data provide further evidence that mineralocorticoids promote cardiac hypertrophy even in the absence of BP changes. This hypertrophic process is mediated in part by the activation of angiotensin II AT(1) receptors.
Resumo:
RESUMENeurones transitoires jouant un rôle de cibles intermédiaires dans le guidage des axones du corps calleuxLe guidage axonal est une étape clé permettant aux neurones d'établir des connexions synaptiques et de s'intégrer dans un réseau neural fonctionnel de manière spécifique. Des cellules-cibles intermédiaires appelées « guidepost » aident les axones à parcourir de longues distances dans le cerveau en leur fournissant des informations directionnelles tout au long de leur trajet. Il a été démontré que des sous-populations de cellules gliales au niveau de la ligne médiane guident les axones du corps calleux (CC) d'un hémisphère vers l'autre. Bien qu'il fût observé que le CC en développement contenait aussi des neurones, leur rôle était resté jusqu'alors inconnu.La publication de nos résultats a montré que pendant le développement embryonnaire, le CC contient des glies mais aussi un nombre considérable de neurones glutamatergiques et GABAergiques, nécessaires à la formation du corps calleux (Niquille et al., PLoS Biology, 2009). Dans ce travail, j'ai utilisé des techniques de morphologie et d'imagerie confocale 3D pour définir le cadre neuro-anatomique de notre modèle. De plus, à l'aide de transplantations sur tranches in vitro, de co-explants, d'expression de siRNA dans des cultures de neurones primaires et d'analyse in vivo sur des souris knock-out, nous avons démontré que les neurones du CC guident les axones callosaux en partie grâce à l'action attractive du facteur de guidage Sema3C sur son récepteur Npn- 1.Récemment, nous avons étudié l'origine, les aspects dynamiques de ces processus, ainsi que les mécanismes moléculaires impliqués dans la mise en place de ce faisceau axonal (Niquille et al., soumis). Tout d'abord, nous avons précisé l'origine et l'identité des neurones guidepost GABAergiques du CC par une étude approfondie de traçage génétique in vivo. J'ai identifié, dans le CC, deux populations distinctes de neurones GABAergiques venant des éminences ganglionnaires médiane (MGE) et caudale (CGE). J'ai ensuite étudié plus en détail les interactions dynamiques entre neurones et axones du corps calleux par microscopie confocale en temps réel. Puis nous avons défini le rôle de chaque sous-population neuronale dans le guidage des axones callosaux et de manière intéressante les neurones GABAergic dérivés de la MGE comme ceux de la CGE se sont révélés avoir une action attractive pour les axones callosaux dans des expériences de transplantation. Enfin, nous avons clarifié la base moléculaire de ces mécanismes de guidage par FACS sorting associé à un large criblage génétique de molécules d'intérêt par une technique très sensible de RT-PCR et ensuite ces résultats ont été validés par hybridation in situ.Nous avons également étudié si les neurones guidepost du CC étaient impliqués dans son agénésie (absence de CC), présente dans nombreux syndromes congénitaux chez 1 humain. Le gène homéotique Aristaless (Arx) contrôle la migration des neurones GABAergiques et sa mutation conduit à de nombreuses pathologies humaines, notamment la lissencéphalie liée à IX avec organes génitaux anormaux (XLAG) et agénésie du CC. Fait intéressant, nous avons constaté qu'ARX est exprimé dans toutes les populations GABAergiques guidepost du CC et que les embryons mutant pour Arx présentent une perte drastique de ces neurones accompagnée de défauts de navigation des axones (Niquille et al., en préparation). En outre, nous avons découvert que les souris déficientes pour le facteur de transcription ciliogenic RFX3 souffrent d'une agénésie du CC associé avec des défauts de mise en place de la ligne médiane et une désorganisation secondaire des neurones glutamatergiques guidepost (Benadiba et al., submitted). Ceci suggère fortement l'implication potentielle des deux types de neurones guidepost dans l'agénésie du CC chez l'humain.Ainsi, mon travail de thèse révèle de nouvelles fonctions pour ces neurones transitoires dans le guidage axonal et apporte de nouvelles perspectives sur les rôles respectifs des cellules neuronales et gliales dans ce processus.ABSTRACTRole of transient guidepost neurons in corpus callosum development and guidanceAxonal guidance is a key step that allows neurons to build specific synaptic connections and to specifically integrate in a functional neural network. Intermediate targets or guidepost cells act as critical elements that help to guide axons through long distance in the brain and provide information all along their travel. Subpopulations of midline glial cells have been shown to guide corpus callosum (CC) axons to the contralateral cerebral hemisphere. While neuronal cells are also present in the developing corpus callosum, their role still remains elusive.Our published results unravelled that, during embryonic development, the CC is populated in addition to astroglia by numerous glutamatergic and GABAergic guidepost neurons that are essential for the correct midline crossing of callosal axons (Niquille et al., PLoS Biology, 2009). In this work, I have combined morphological and 3D confocal imaging techniques to define the neuro- anatomical frame of our system. Moreover, with the use of in vitro transplantations in slices, co- explant experiments, siRNA manipulations on primary neuronal culture and in vivo analysis of knock-out mice we have been able to demonstrate that CC neurons direct callosal axon outgrowth, in part through the attractive action of Sema3C on its Npn-1 receptor.Recently, we have studied the origin, the dynamic aspects of these processes as well as the molecular mechanisms involved in the establishment of this axonal tract (Niquille et al., submitted). First, we have clarified the origin and the identity of the CC GABAergic guidepost neurons using extensive in vivo cell fate-mapping experiments. We identified two distinct GABAergic neuronal subpopulations, originating from the medial (MGE) and caudal (CGE) ganglionic eminences. I then studied in more details the dynamic interactions between CC neurons and callosal axons by confocal time-lapse video microscopy and I have also further characterized the role of each guidepost neuronal subpopulation in callosal guidance. Interestingly, MGE- and CGE-derived GABAergic neurons are both attractive for callosal axons in transplantation experiments. Finally, we have dissected the molecular basis of these guidance mechanisms by using FACS sorting combined with an extensive genetic screen for molecules of interest by a sensitive RT-PCR technique, as well as, in situ hybridization.I have also investigated whether CC guidepost neurons are involved in agenesis of the CC which occurs in numerous human congenital syndromes. Aristaless-related homeobox gene (Arx) regulates GABAergic neuron migration and its mutation leads to numerous human pathologies including X-linked lissencephaly with abnormal genitalia (XLAG) and severe CC agenesis. Interestingly, I found that ARX is expressed in all the guidepost GABAergic neuronal populations of the CC and that Arx-/- embryos exhibit a drastic loss of CC GABAergic interneurons accompanied by callosal axon navigation defects (Niquille et al, in preparation). In addition, we discovered that mice deficient for the ciliogenic transcription factor RFX3 suffer from CC agenesis associated with early midline patterning defects and a secondary disorganisation of guidepost glutamatergic neurons (Benadiba et al., submitted). This strongly points out the potential implication of both types of guidepost neurons in human CC agenesis.Taken together, my thesis work reveals novel functions for transient neurons in axonal guidance and brings new perspectives on the respective roles of neuronal and glial cells in these processes.
Resumo:
The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-gamma (IFN-gamma)-producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X(7) purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1beta (IL-1beta). The priming of IFN-gamma-producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3(-/-)) or caspase-1-deficient (Casp-1(-/-)) mice unless exogenous IL-1beta is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7(-/-) or Nlrp3(-/-) or Casp1(-/-) hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.
Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.
Resumo:
Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.
Resumo:
Angiotensin II can raise blood pressure rapidly by inducing direct vasoconstriction and by activating the sympathetic nervous system via central and peripheral mechanisms. In addition, this peptide may act as a growth factor to cause vascular and cardiac hypertrophy (CVH). The structural changes caused by hypertension can therefore be amplified by angiotensin II. Blockade of angiotensin II generation with angiotensin-converting enzyme (ACE) inhibitors appears to be particularly effective in preventing the development of cardiovascular hypertrophy. This beneficial effect might be related to some extent to local accumulation of bradykinin. ACE is one of the enzymes physiologically involved in bradykinin degradation. Treatment of hypertensive rats with a selective bradykinin antagonist can attenuate the blood pressure-lowering effect of ACE inhibition and render less effective the prevention of intimal thickening after endothelial removal from the rat carotid artery. Bradykinin is a vasodilator that acts by increasing the release of endothelium-derived factors such as nitric oxide and prostacyclin, which may have antiproliferative activity. However, blockade of the renin-angiotensin system with an angiotensin II subtype 1-receptor antagonist is also effective in preventing cardiac hypertrophy and neointimal proliferation after endothelial injury. Therefore, the exact contribution of bradykinin to the beneficial effects of ACE inhibition on cardiovascular hypertrophy remains to be further explored.
Resumo:
Plasmodium sporozoites traverse several host cells before infecting hepatocytes. In the process, the plasma membranes of the cells are ruptured, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory/immunogenic and can serve as a danger signal initiating distinct responses in various cells. Thus, our study aimed at characterizing the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-kappaB, a main regulator of host inflammatory responses, in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-kappaB occurred shortly after infection and led to a reduction of infection load in a time-dependent manner in vitro and in vivo, an effect that could be reverted by addition of the specific NF-kappaB inhibitor BAY11-7082. Furthermore, no NF-kappaB activation was observed when Spect(-/-) parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-kappaB activation causes the induction of inducible NO synthase expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88(-/-) mice showed no NF-kappaB activation and inducible NO synthase expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. Thus, host cell wounding due to parasite migration induces inflammation which limits the extent of parasite infection