973 resultados para blue whales, bioacoustics, D calls, HARPs, detectors
Resumo:
in December 1997,196 soil and snow samples were collected from Vestvold Hills, Davis Base, Antarctica. Two isolates, CBS 8804 T (pink colonies) and CBS 8805 (yellow colonies), were shown by proteome analysis and DNA sequencing to represent the same species. Results from the sequencing of the D1/D2 region of the large rDNA subunit placed this species in the hymenomycetous tree in a unique sister clade to the Trichosporonalles and the Tremellalles. The clade consists of Holtermannia corniformis CBS 6979 and CBS strains 8804(T) 8805, 8016, 7712, 7713 and 7743. Morphological and physiological characteristics placed this species in the genus Cryptococcus, with characteristics including the assimilation Of D-glucuronate and myo-inositol, no fermentation, positive Diazonium blue B and urease reactions, absence of sexual reproduction and production of starch-like compounds. Fatty acid analysis identified large proportions of polyunsaturated lipids, mainly linolleic (C-18.2) and, to a lesser extent, linolenic (C-18.3) acids. On the basis of the physiological and phylogenetic data, isolates CBS 8804(T) and CBS 8805 are described as Cryptococcus nyarrowii sp. nov.
Resumo:
The C-type natriuretic peptide from the platypus venom (OvCNP) exists in two forms, OvCNPa and OvCNPb, whose amino acid sequences are identical. Through the use of nuclear magnetic resonance, mass spectrometry, and peptidase digestion studies, we discovered that OvCNPb incorporates a D-amino acid at position 2 in the primary structure. Peptides containing a D-amino acid have been found in lower forms of organism, but this report is the first for a D-amino acid in a biologically active peptide from a mammal. The result implies the existence of a specific isomerase in the platypus that converts an L-amino acid residue in the protein to the D-configuration. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
We are interested in determining whether low maternal vitamin D-3 affects brain development in utero. Whilst the vitamin D receptor (VDR) has been identified in embryonic rat brains, the timing and magnitude of its expression across the brain remains unclear. In this study we have quantitated VDR expression during development as well correlated the timing of its appearance with two vital developmental events, apoptosis and mitosis. Brains from embryonic rats (embryonic days 15-23) were examined. We show that the well-described increase in apoptotic cells and decrease in mitotic cells during development correlates with the appearance of the VDR in brain tissue. Given that vitamin D-3 regulates mitosis and apoptosis in non-neuronal tissue we speculate that the timing of VDR expression in embryonic brain may directly or indirectly mediate features of neuronal apoptosis and mitosis.
Resumo:
We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated geological fault zones when they are heated uniformly from below. In particular, we have derived exact analytical solutions for the critical Rayleigh numbers of different convective flow structures. Using these critical Rayleigh numbers, three interesting convective flow structures have been identified in a geological fault zone system. It has been recognized that the critical Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length, in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D slender-circle flow structure is so close to that for the 3-D convective flow structure, the system may have almost the same chance to pick up the 3-D convective flow structures. Also, because the convection modes are so close for the 3-D convective flow structures, the convective flow may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to height ratio approaching zero. This understanding demonstrates the beautiful aspects of the present analytical solution for the convective instability of 3-D geological fault zones, because the present analytical solution is valid for any value of the ratio of the fault height to thickness. Using the present analytical solution, the conditions, under which different convective flow structures may take place, can be easily determined.