995 resultados para block exemption regulation
Resumo:
The Academy's review, 'A new pathway for the regulation and governance of health research' was published in January 2011. The report was prepared by a working group, chaired by Professor Sir Michael Rawlins FMedSci, convened in response to an invitation from Government to review the regulation and governance of UK health research involving human participants, their tissue or their data.The report proposes four key principles that should underpin the regulation and governance framework around health research in the UK, and makes recommendations to:Create a new Health Research Agency (HRA) to rationalise the regulation and governance of all health research. Include within the HRA a new National Research Governance Service to facilitate timely approval of research studies by NHS Trusts. Improve the UK environment for clinical trials.Provide access to patient data that protects individual interests and allows approved research to proceed effectively. Embed a culture that values research within the NHS.
Resumo:
This article examines the extent and limits of non-state forms of authority in international relations. It analyses how the information and communication technology (ICT) infrastructure for the tradability of services in a global knowledge-based economy relies on informal regulatory practices for adjustment of ICT-related skills. Companies and associations provide training and certification programmes as part of a growing market for educational services setting their own standards. The existing literature on non-conventional forms of authority in the global political economy has emphasised that the consent of actors subject to informal rules and explicit or implicit state recognition remains crucial for the effectiveness of those new forms of power. However, analyses based on a limited sample of actors tend toward a narrow understanding of the issues and fail to fully explore the differentiated space in which non-state authority is emerging. This paper examines the form of authority underpinning the global knowledge-based economy within the broader perspective of the issues likely to be standardised by technical ICT specification, the wide range of actors involved, and the highly differentiated space where standards become authoritative. The empirical findings highlight the role of different private actors in establishing international educational norms in this field. They also pinpoint the limits of profit-oriented standard-settings, notably with regard to generic norms.
Resumo:
L'ARN Polymérase III (Pol III) transcrit un ensemble de petits ARN non traduits impliqués dans des processus cellulaires tels que la biosynthèse des protéines, la maturation des ARNs ou le contrôle transcriptionnel. De ce fait, la Pol III joue un rôle important dans la régulation de la croissance et la prolifération cellulaire. L'initiation de la transcription par la Pol III nécessite l'interaction entre des facteurs de transcription et le complexe de la Pol III lui-même. Un sous- complexe de la Pol III, composé de 3 sous-unités, HsRPC3, HsRPC6 et HsRPC7 sert d'intermédiaire dans cette interaction. Dans cette étude, nous avons caractérisé une nouvelle sous-unité de la Pol III, HsRPC7-Like, homologue à HsRPC7. Nous avons montré que ces deux homologues se trouvent spécifiquement chez les vertébrés. Ils proviennent d'un ancêtre commun qui, après duplication il y a 600 millions d'années, a donné naissance à ces deux paralogues. Dans les cellules humaines, deux formes de Pol III coexistent : l'une contientt HsRPC7, l'autre HsRPC7-Like. Nous avons localisé, à l'échelle du génome entier, la présence de ces deux formes de Pol III dans des cellules humaines et dans le foie de souris. Les deux sous-unités ont démontré des caractéristiques identiques, suggérant qu'elles possèdent des fonctions similaires. Cependant, nous avons analysé les motifs d'expression des gènes codant pour RPC7 et RPC7-Like dans des lignées cellulaires dans des conditions variées telles que la concentration de sérum et la densité cellulaire, ainsi que les motifs d'expression dans le foie de souris et des cellules d'hépatocarcinome de souris. Nos résultats suggèrent que l'expression de ces deux sous-untiés varie en fonction de l'activité de prolifération de la cellule. - RNA polymerase III (Pol III) transcribes a set of genes coding for short untranslated RNAs involved in essential cellular processes as for example protein biosynthesis, RNA maturation, and transcriptional control. Thereby Pol III plays an important role in regulating cell growth and proliferation. Initiation of Pol III transcription requires interactions between transcription factors and the Pol III core complex. A Pol III sub-complex composed of three subunits, HsRPC3, HsRPC6, and HsRPC7 mediates this interaction. In this study, we have characterized a new Pol III subunit, HsRPC7-Like, an homologue of HsRPC7. We have shown that these two homologues are specific to vertebrates and originate from an ancestor gene that duplicated 600 mio years ago to give birth to two paralogues. In human cells, two forms of Pol III coexist, one containing HsRPC7 and the other HsRPC7-Like. We have localized, genome-wide, these two Pol III forms in human cells and mouse liver. Both subunits were found on all types of Pol III genes, suggesting that they share similar function. However, we analysed the expression patterns of the RPC7 and RPC7-Like coding genes under various conditions of serum concentration and cell density in different cell lines, as well as expression patterns in mouse liver and mouse hepatocarcinoma cells. Our results suggest that the expression of these two subunits varies with the proliferation rate of the cell.
Resumo:
Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.
Resumo:
This paper centers on some whole-istic organizational and functional aspects of hepatic Schistosoma mansoni granuloma, which is an extremely complex system. First, it structurally develops a collagenic topology, originated bidirectionally from an inward and outward assembly of growth units. Inward growth appears to be originated from myofibroblasts derived from small portal vessel around intravascular entrapped eggs, while outward growth arises from hepatic stellate cells. The auto-assembly of the growth units defines the three-dimensional scaffold of the schistosome granulomas. The granuloma surface irregularity and its border presented fractal dimension equal to 1.58. Second, it is internally regulated by intricate networks of immuneneuroendocrine stimuli orchestrated by leptin and leptin receptors, substance P and Vasoactive intestinal peptide. Third, it can reach the population of ± 40,000 cells and presents an autopoietic component evidenced by internal proliferation (Ki-67+ Cells), and by expression of c-Kit+ Cells, leptin and leptin receptor (Ob-R), granulocyte-colony stimulating factor (G-CSF-R), and erythropoietin (Epo-R) receptors. Fourth, the granulomas cells are intimately connected by pan-cadherins, occludin and connexin-43, building a state of closing (granuloma closure). In conclusion, the granuloma is characterized by transitory stages in such a way that its organized structure emerges as a global property which is greater than the sum of actions of its individual cells and extracellular matrix components.
Resumo:
The main regulators of leukocyte trafficking during inflammatory responses are chemokines. However, another class of recently identified chemotactic agents is extracellular cyclophilins, the proteins mostly known as receptors for the immunosuppressive drug, cyclosporine A. Cyclophilins can induce leukocyte chemotaxis in vitro and have been detected at elevated levels in inflamed tissues, suggesting that they might contribute to inflammatory responses. We recently identified CD147 as the main signaling receptor for cyclophilin A. In the current study we examined the contribution of cyclophilin-CD147 interactions to inflammatory responses in vivo using a mouse model of acute lung injury. Blocking cyclophilin-CD147 interactions by targeting CD147 (using anti-CD147 Ab) or cyclophilin (using nonimmunosuppressive cyclosporine A analog) reduced tissue neutrophilia by up to 50%, with a concurrent decrease in tissue pathology. These findings are the first to demonstrate the significant contribution of cyclophilins to inflammatory responses and provide a potentially novel approach for reducing inflammation-mediated diseases.
Resumo:
The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.
Resumo:
To study the functional role of individual alpha1-adrenergic (AR) subtypes in blood pressure (BP) regulation, we used mice lacking the alpha1B-AR and/or alpha1D-AR with the same genetic background and further studied their hemodynamic and vasoconstrictive responses. Both the alpha1D-AR knockout and alpha1B-/alpha1D-AR double knockout mice, but not the alpha1B-AR knockout mice, had significantly (p < 0.05) lower levels of basal systolic and mean arterial BP than wild-type mice in nonanesthetized condition, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. All mutants showed a significantly (p < 0.05) reduced catecholamine-induced pressor and vasoconstriction responses. It is noteworthy that the infusion of norepinephrine did not elicit any pressor response at all in alpha1B-/alpha1D-AR double knockout mice. In an attempt to further examine alpha1-AR subtype, which is involved in the genesis or maintenance of hypertension, BP after salt loading was monitored by tail-cuff readings and confirmed at the endpoint by direct intra-arterial recording. After salt loading, alpha1B-AR knockout mice developed a comparable level of hypertension to wild-type mice, whereas mice lacking alpha1D-AR had significantly (p < 0.05) attenuated BP and lower levels of circulating catecholamines. Our data indicated that alpha1B- and alpha1D-AR subtypes participate cooperatively in BP regulation; however, the deletion of the functional alpha1D-AR, not alpha1B-AR, leads to an antihypertensive effect. The study shows differential contributions of alpha1B- and alpha1D-ARs in BP regulation.
Resumo:
The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.
Resumo:
Résumé : L'insuline est produite et sécrétée par la cellule ß-pancréatique. Son rôle est de régler le taux de sucre dans le sang. Si ces cellules meurent ou échouent à produire suffisamment de l'insuline, les sujets développent le diabète de type 2 (DT2), une des maladies les plus communes dans les pays développés. L'excès chronique des lipoprotéines LDL oxydés (oxLDL) et/ou des cytokines pro-inflammatoires comme l'interleukine-1ß (IL-1ß) participent au dérèglement et à la mort des cellules ß. Nous avons montré qu'une chute des niveaux d'expression de la protéine nommée «mitogen activated protein kinase 8 interacting protein 1» ou «islet brain 1 (IB 1)» est en partie responsable des effets provoqués par les oxLDL ou IL-1ß. IB1 régule l'expression de l'insuline et la survie cellulaire en inhibant la voie de signalisation « c-jun N-terminal Kinase (JNK)». La réduction des niveaux d'expression d'IB1 provoque l'activation de la voie JNK en réponse aux facteurs environnementaux, et ainsi initie la réduction de l'expression de l'insuline et l'induction du programme de mort cellulaire. Les mimétiques de l'hormone "Glucagon-like peptide 1", tel que l'exendin-4 (ex-4), sont une nouvelle classe d'agents hypoglycémiants utilisés dans le traitement du DT2. Les effets bénéfiques de l'ex-4 sont en partie accomplis en préservant l'expression de l'insuline et la survie des cellules ß contre les stress associés au DT2. La restauration des niveaux d'expression d'IB1 est un des mécanismes par lequel l'ex-4 prodigue son effet sur la cellule. En effet, cette molécule stimule l'activité du promoteur du gène et ainsi compense la réduction du contenu en IB1 causée par le stress. Outre ce rôle anti-apoptotique, dans ce travail de thèse nous avons mis en évidence une autre fonction d'IB1 dans la cellule ß. La réduction de l'activité ou des niveaux d'expression d'IB1 induisent une réduction importante de la sécrétion de l'insuline en réponse au glucose. Le mécanisme par lequel IB1 régule la sécrétion de l'insuline implique à la fois le métabolisme du glucose et éventuellement le transport vésiculaire en contrôlant l'expression de la protéine annexin A2. En résumé, IB 1 est une molécule clé à travers laquelle l'environnement du diabétique pourrait exercer un effet délétère sur la cellule ß. L'amélioration de l'activité d'IB1 et/ou de son expression devrait être considérée dans les approches thérapeutiques futures visant à limiter la perte des cellules ß dans le diabète. Abstract : ß-cells of the pancreatic islets of Langerhans produce and secrete insulin when blood glucose rises. In turn, insulin ensures that plasma glucose concentrations return within a relatively narrow physiological range. If ß-cells die or fail to produce enough insulin, individuals develop one of the most common diseases in Western countries, namely type 2 diabetes (T2D). Chronic excess of oxidized low density lipoproteins (oxLDL) and/or pro-inflammatory cytokines such as interleukin 1-ß (IL-1ß) contribute to decline of ß-cells and thereby are thought to accelerate progression of the disease overtime. We showed that profound reduction in the levels of the mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) causes ß-cell failure accomplished by oxLDL or IL-1 ß. IB1 regulates insulin expression and cell survivals by inhibiting the c-Jun N-terminal Kinase pathway. Diminution in IB 1 levels leads to an increase in activation of the JNK pathway induced by environmental stressors, and thus initiates loss of insulin expression and programmed cell death. The mimetic agents of the glucoincretin glucagon-like peptide 1 such as exendin-4 (ex-4) are new class of hypoglycaemic medicines for treatment of T2D. The beneficial property is in part achieved by preserving insulin expression and ß-cell survival against stressors related to diabetes. Restored levels in IB 1 account for the cytoprotective effect of the ex-4. In fact, the latter molecule .stimulates the promoter activity of the gene and thus compensates loss of IB1 content triggered by stress. Beside of the anti-apoptotic role, an additional leading function for IB 1 in ß-cells was highlighted in this thesis. Impairment in IB1 activity or silencing of the gene in ß-cells revealed a major reduction in insulin secretion elicited by glucose. The mechanisms whereby IB 1 couples glucose to insulin release involve glucose metabolism and potentially, vesicles trafficking by maintaining the levels of annexin A2. IB 1 is therefore a key molecule through which environmental factors related to diabetes may exert harmful effects on ß-cells. Improvement in IB 1 activity and/or expression should be considered as a target for therapeutic purpose.
Resumo:
BACKGROUND: Isolated congenital atrioventricular block (CAVB) diagnosed in utero is associated with a high morbidity and mortality. Prognosis is especially poor when heart rate drops below 55 beats per minute (bpm) and when fetal hydrops develops. We describe the natural history and outcome of 24 infants with isolated CAVB diagnosed in utero, review the literature, and assess the risk factors that could predict outcome. METHODS: This was a retrospective multicenter study of 24 patients with isolated CAVB diagnosed in utero. RESULTS: CAVB was detected at a mean gestational age (GA) of 24.7 +/- 5.1 weeks. Ten fetuses initially presented with complete heart block. Low heart rate or incomplete heart block was the first documentation of bradyarrhythmia in the other 14 fetuses. In 11 of them, CAVB developed during pregnancy after a median time of 3 (range 1-16) weeks. Fetal hydrops developed in 10 of 24 (42%) fetuses at a mean GA of 27.6 +/- 5.1 weeks. Hydropic fetuses showed lower heart rates during pregnancy (47 +/- 10 bpm) than non-hydropic fetuses (57 +/- 10 bpm). There were three intrauterine deaths; all were hydropic and female. Nine viable females and 12 males were born at a mean GA of 37.1 +/- 6.1 weeks with an average birth weight of 3097 +/- 852 g. Fifteen CAVB patients required pacemaker (PM) intervention, 10 of them immediately after birth. Dilated cardiomyopathy (DCM) developed in three infants of whom two died of congestive heart failure, shortly after the diagnosis was made; one is still alive. Mortality before or after birth was 21%, and was associated with heart rates below 50 bpm and development of fetal hydrops. Poor outcome, defined as death, PM implantation, or development of DCM, occurred in 83% of cases and was associated with heart rates below 60 bpm during pregnancy. CONCLUSIONS: Isolated CAVB diagnosed in utero is associated with high morbidity and mortality. Patients who develop fetal hydrops show lower heart rates during pregnancy than patients who do not. A fetal heart rate below 50 bpm and development of fetal hydrops is associated with increased mortality. Rates below 60 bpm are associated with PM requirement and/or DCM.
Resumo:
alphabeta and gammadelta T cells originate from a common, multipotential precursor population in the thymus, but the molecular mechanisms regulating this lineage-fate decision are unknown. We have identified Sox13 as a gammadelta-specific gene in the immune system. Using Sox13 transgenic mice, we showed that this transcription factor promotes gammadelta T cell development while opposing alphabeta T cell differentiation. Conversely, mice deficient in Sox13 expression exhibited impaired development of gammadelta T cells but not alphabeta T cells. One mechanism of SOX13 function is the inhibition of signaling by the developmentally important Wnt/T cell factor (TCF) pathway. Our data thus reveal a dominant pathway regulating the developmental fate of these two lineages of T lymphocytes.
Resumo:
Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.