998 resultados para bismuth layer
Resumo:
Exposure of few-layer MoS2, WS2 and MoSe2 to high-temperature shock waves causes morphological changes and a significant decrease in the interlayer separation between the (002) planes, the decrease being greatest in MoSe2. Raman spectra show softening of both the A(1g) and the E-2g(1) modes initially, followed by a slightly stiffening. Using first-principles density functional theoretical analysis of the response of few-layer MoS2 to shock waves, we propose that a combination of shear and uniaxial compressive deformation leads to flattening of MoS2 sheets which is responsible for the changes in the vibrational spectra. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Nanosheets of MoO3 that consist of only a few layers have been prepared by using four methods, including the oxidation of MoS2 nanosheets, intercalation with LiBr, and ultrasonication. These nanosheets have been characterized by atomic force microscopy and other techniques. Besides showing a blue-shift of the optical absorption band compared to the bulk sample, few-layer MoO3 exhibits enhanced photocatalytic activity. In combination with a borocarbonitride, few-layer MoO3 shows good performance characteristics as a supercapacitor electrode.
Resumo:
In the design of modulation schemes for the physical layer network-coded two way relaying scenario with two phases (Multiple access (MA) Phase and Broadcast (BC) Phase), it was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference and all these network coding maps should satisfy a requirement called the exclusive law. In [11] the case in which the end nodes use M-PSK signal sets is extensively studied using Latin Squares. This paper deals with the case in which the end nodes use square M-QAM signal sets. In a fading scenario, for certain channel conditions, termed singular fade states, the MA phase performance is greatly reduced. We show that the square QAM signal sets lead to lesser number of singular fade states compared to PSK signal sets. Because of this, the complexity at the relay is enormously reduced. Moreover lesser number of overhead bits are required in the BC phase. We find the number of singular fade states for PAM and QAM signal sets used at the end nodes. The fade state γejθ = 1 is a singular fade state for M-QAM for all values of M and it is shown that certain block circulant Latin Squares remove this singular fade state. Simulation results are presented to show that QAM signal set perform better than PSK.
Resumo:
In-situ impedance spectroscopy of layer-by-layer self-assembly of weak polyelectrolytes is presented. Interdigitated capacitors with active area of 1×1 mm2 and electrode spacing of 5 μm are fabricated and used for this purpose. Measurement results indicate that the impedance decreases with increase in number of polyelectrolyte layers. About 2.5% of relative change in magnitude of impedance at 104.7 KHz is seen for four bi-layers of Poly(Allylamine Hydrochloride) (PAH)/Poly(Acrylic acid) (PAA). An electrical equivalent for polyelectrolyte binding is obtained.
Resumo:
Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO-). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.
Resumo:
Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.
Resumo:
The aim of the contribution is to introduce a high performance anode alternative to graphite for lithium-ion batteries (LiBs). A simple process was employed to synthesize uniform graphene-like few-layer tungsten sulfide (WS2) supported on reduced graphene oxide (RGO) through a hydrothermal synthesis route. The WS2-RGO (80:20 and 70:30) composites exhibited good enhanced electrochemical performance and excellent rate capability performance when used as anode materials for lithium-ion batteries. The specific capacity of the WS2-RGO composite delivered a capacity of 400-450 mAh g(-1) after 50 cycles when cycled at a current density of 100 mA g(-1). At 4000 mA g(-1), the composites showed a stable capacity of approximately 180-240 mAh g(-1), respectively. The noteworthy electrochemical performance of the composite is not additive, rather it is synergistic in the sense that the electrochemical performance is much superior compared to both WS2 and RGO. As the observed lithiation/delithiation for WS2-RGO is at a voltage 1.0 V (approximate to 0.1 V for graphite, Li* /Li), the lithium-ion battery with WS2-RGO is expected to possess high interface stability, safety and management of electrical energy is expected to be more efficient and economic. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. Depending on the signal set used at the end nodes, the minimum distance of the effective constellation seen at the relay becomes zero for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: (i) the ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding called the non-removable singular fade states and (ii) the ones which occur due to the choice of the signal set and whose harmful effects can be removed called the removable singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR-1: the error events associated with the removable and nonremovable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states fall as SNR-2, thereby providing a coding gain over the case when adaptive network coding is not used. Also, it is shown that for a Rician fading channel, the error during the MA phase dominates over the error during the BC phase. Hence, adaptive network coding, which improves the performance during the MA phase provides more gain in a Rician fading scenario than in a Rayleigh fading scenario. Furthermore, it is shown that for large Rician factors, among those removable singular fade states which have the same magnitude, those which have the least absolute value of the phase - ngle alone contribute dominantly to the end-to-end SER and it is sufficient to remove the effect of only such singular fade states.
Resumo:
The design of modulation schemes for the physical layer network-coded two way relaying scenario is considered with the protocol which employs two phases: Multiple access (MA) Phase and Broadcast (BC) phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase. In other words, the set of all possible channel realizations (the complex plane) is quantized into a finite number of regions, with a specific network coding map giving the best performance in a particular region. We obtain such a quantization analytically for the case when M-PSK (for M any power of 2) is the signal set used during the MA phase. We show that the complex plane can be classified into two regions: a region in which any network coding map which satisfies the so called exclusive law gives the same best performance and a region in which the choice of the network coding map affects the performance, which is further quantized based on the choice of the network coding map which optimizes the performance. The quantization thus obtained analytically, leads to the same as the one obtained using computer search for 4-PSK signal set by Koike-Akino et al., for the specific value of M = 4.
Resumo:
Borocarbonitrides (BxCyNz) with a graphene-like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid-state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon-rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100cycles) and rate capability over widely varying current density values (0.05-1Ag(-1)). B0.15C0.73N0.12 has a very high specific capacity of 710mAhg(-1) at 0.05Ag(-1). With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900mAhg(-1) at 0.05Ag(-1). It is believed that the solid-electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .
Resumo:
The transonic flutter dip of an aeroelastic system is primarily caused by compressibility of the flowing fluid. Viscous effects are not dominant in the pre-transonic dip region. In fact, an Euler solver can predict this flutter boundary with considerable accuracy. However with an increase in Mach number the shock moves towards the trailing edge causing shock induced separation. This shock-boundary layer interaction changes the flutter boundary in the transonic and post-transonic dip region significantly. We discuss the effect of viscosity in changing the flutter boundary in the post-transonic dip region using a RANS solver coupled to a two-degree of freedom model of the structural dynamics of a wing.
Resumo:
In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.
Correlations between mechanical and photoluminescence properties in Eu doped sodium bismuth titanate
Resumo:
Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The present study demonstrates the use of few-layer borocarbonitride nanosheets synthesized by a simple method as non-platinum cathode catalysts for the oxygen reduction reaction (ORR) in alkaline medium. Composition-dependent ORR activity is observed and the best performance was found when the composition was carbon-rich. Mechanistic aspects reveal that ORR follows the 4e(-) pathway with kinetic parameters comparable to those of the commercial Pt/C catalyst. Excellent methanol tolerance is observed with the BCN nanosheets unlike with Pt/C.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.