861 resultados para biotic and aboitic stress
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study examined the interaction of hypercaloric diet (HD) and physical exercise on lipid profile and oxidative stress in serum and liver of rats. Male Wistar rats (60-days-old) were fed with a control (C) and hypercaloric diet (H). Each of the two dietary groups (C and H) was divided into three subgroups (n = 8), sedentary (CS and HS), exercised 2 days a week (CE2 and HE2) and exercised 5 days a week (CE5 and HE5). The swimming was selected as a model for exercise performance. After 8-weeks exercised rats showed decreased lactate dehydrogenase serum activities, demonstrating the effectiveness of the swimming as an aerobic-training protocol. Exercise 5-days a week reduced the body weight gain. Triacylglycerol (TG) and very low-density lipoprotein (VLDL-C) were increased in HD-fed rats. HE5 and CE5 rats had decreased TG, VLDL-C and cholesterol. HE2 rats had enhanced high-density lipoprotein (HDL-C) in serum. No alterations were observed in lipid hydroperoxide (LH), while total antioxidant substances (TAS) were increased in serum of exercised rats. HD-fed rats had hepatic TG accumulation. Superoxide dismutase activities were increased and catalase was decreased in liver of exercised rats. The interaction of HD and physical exercise reduced TAS and enhanced LH levels in hepatic tissue. In conclusion, this study confirmed the beneficial effect of physical exercise as a dyslipidemic-lowering component. Interaction of HD and physical exercise had discrepant effects on serum and liver oxidative stress. The interaction of HID and physical exercise reduced the oxidative stress in serum. HD and physical exercise interaction had pro-oxidant effect on hepatic tissue, suggesting that more studies should be done before using physical exercise as an adjunct therapy to reduce the adverse effects of HD. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The establishment of plant species depends crucially on where the seeds are deposited. However, since most studies have been conducted in continuous forests, not much is known about the effects of forest fragmentation on the maintenance of abiotic and biotic characteristics in microhabitats and their effects on seed survival. in this study, we evaluated the effects of forest fragmentation on the predation upon the seeds of the palm Syagrus romanzoffiana in three microhabitats (interior forest, forest edge and gaps) in eight fragments of semi-deciduous Atlantic forest ranging in size from 9.5 ha to 33,845 ha in southeastern Brazil. Specifically, we examined the influence of the microhabitat structure, fauna and fragment size on the pattern of seed predation. Fragments < 100 ha showed similar abiotic and biotic characteristics to those of the forest edge, with no seed predation in these areas. Forest fragments 230-380 ha in size did not present safe sites for S. romanzoffiana seed survival and showed high seed predation intensity in all microhabitats evaluated. In fragments larger than 1000 ha, the seed predation was lower, with abiotic and biotic differences among gaps, interior forests and forest edges. In these fragments, the survival of S. romanzoffiana seeds was related to squirrel abundance and interior forest maintenance. Based on these results, we concluded that there are no safe sites for S. romanzoffiana seed establishment in medium- and small-sized fragments as result of the biotic and abiotic pressure, respectively We suggest that on these forest fragments, management plans are needed for the establishment of S. romanzoffiana, such as interior forest improvement and development in small-sized sites in order to minimize the edge effects, and on medium-sized fragments, we suggest post-dispersal seed protection in order to avoid seed predation by vertebrates. our findings also stress the importance of assessing the influence of forest fragmentation on angiosperm reproductive biology as part of the effective planning for the management of fragmented areas. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C-3-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem 11 level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4M NaCl salinity or high irradiance of 1000 mu mol m(-2) s(-1), as well as to both stress factors combined (LLSA = low light plus salt; HLCO = high light of 1000 mu mol m(-2)s(-1), no salt; HLSA = high light plus salt). A control of LLCO = low light of 200 mu mol m(-2) s(-1), no salt was used. Parameters of chlorophyll a fluorescence of photosystem 11 (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Delta malate) of similar to 12 mM in the course of the experiment, while HLSA induced stronger CAM of Delta malate similar to 20mM. Effective quantum yield of PSII, Delta F/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F-v/F-m, at predawn times was not affected by any of the conditions, always remaining at >= 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (< 0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETRmax, declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that A crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and tight irradiance stress combined. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7 degrees C to 40.0 degrees C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.
Resumo:
This study investigated the effects of growth hormone therapy on energy expenditure, lipid profile, oxidative stress and cardiac energy metabolism in aging and obesity conditions. Life expectancy is increasing in world population and with it, the incidence of public health problems such as obesity and cardiac alterations. Because growth hormone (GH) concentration is referred to be decreased in aging conditions, a question must be addressed: what is the effect of GH on aging related adverse changes? To investigate the effects of GH on cardiac energy metabolism and its association with calorimetric parameters, lipid profile and oxidative stress in aged and obese rats, initially 32 male Wistar rats were divided into 2 groups (n = 16), C: given standard-chow and water; H: given hypercaloric-chow and receiving 30 % sucrose in its drinking water. After 45 days, both C and H groups were divided into 2 subgroups (n = 8), C + PL: standard-chow, water, and receiving saline subcutaneously; C + GH: standard-chow, water, and receiving 2 mg/kg/day rhGH subcutaneously; H + PL: hypercaloric-chow, 30 % sucrose, receiving saline subcutaneously; H + GH: hypercaloric-chow, 30 % sucrose, receiving rhGH subcutaneously. After 30 days, C + GH and H + PL rats had higher body mass index, Lee-index, body fat content, percent-adiposity, serum triacylglycerol, cardiac lipid-hydroperoxide, and triacylglycerol than C + PL. Energy-expenditure (RMR)/body weight, oxygen consumption and fat-oxidation were higher in H + GH than in H + PL. LDL-cholesterol was highest in H + GH rats, whereas cardiac pyruvate-dehydrogenase and phosphofrutokinase were higher in H + GH and H + PL rats than in C + PL. In conclusion, the present study brought new insights on aging and obesity, demonstrating for the first time that GH therapy was harmful in aged and obesity conditions, impairing calorimetric parameters and lipid profile. GH was disadvantageous in control old rats, having undesirable effects on triacylglycerol accumulation and cardiac oxidative stress.
Resumo:
Dietary modification ought to be the first line of strategy in prevention of the development of cardiac disease. The purpose of this study was to investigate whether dietary restriction, dietary-fibre-enriched diet, and their interactions might affect antioxidant capacity and oxidative stress in cardiac tissue. Male Wistar rats (180-200 g; n = 10) were divided into four groups: control ad libitum diet (C), 50% restricted diet (DR), fed with fibre-enriched diet (F), and 50% restricted fibre-enriched diet (DR-F). After 35 days of the treatments, F, DR, and DR-F rats showed low cholesterol, LDL-cholesterol, and triacylglycerol, and high HDL-cholesterol in serum. The DR, DR-F, and F groups had decreased myocardial lipoperoxide and lipid hydroperoxide. The DR-F and F treatments increased superoxide dismutase and glutatione peroxidase (GSH-Px). The DR treatment increased GSH-Px and catalase activities. Dietary fibre beneficial effects were related to metabolic alterations. The F and DR-F groups showed high cardiac glycogen and low lactate dehydrogenase/citrate synthase ratios, indicating diminished anaerobic and elevated aerobic myocardial metabolism in these animals. There was no synergistic effect between dietary restriction and dietary fibre addition, since no differences were observed in markers of oxidative stress in the F and DR-F groups. Dietary fibre supplementation, rather than energy intake and dietary restriction, appears to be the main process retarding oxidative stress in cardiac tissue.
Resumo:
The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.
Resumo:
Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.