957 resultados para bacterial pathogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show proof of principle for assessing compound biodegradation at 1-2 mg C per L by measuring microbial community growth over time with direct cell counting by flow cytometry. The concept is based on the assumption that the microbial community will increase in cell number through incorporation of carbon from the added test compound into new cells in the absence of (as much as possible) other assimilable carbon. We show on pure cultures of the bacterium Pseudomonas azelaica that specific population growth can be measured with as low as 0.1 mg 2-hydroxybiphenyl per L, whereas in mixed community 1 mg 2-hydroxybiphenyl per L still supported growth. Growth was also detected with a set of fragrance compounds dosed at 1-2 mg C per L into diluted activated sludge and freshwater lake communities at starting densities of 10(4) cells per ml. Yield approximations from the observed community growth was to some extent in agreement with standard OECD biodegradation test results for all, except one of the examined compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of body weight and of blood glucose concentrations depends on the exquisite coordination of the function of several organs and tissues, in particular the liver, muscle and fat. These organs and tissues have major roles in the use and storage of nutrients in the form of glycogen or triglycerides and in the release of glucose or free fatty acids into the blood, in periods of metabolic needs. These mechanisms are tightly regulated by hormonal and nervous signals, which are generated by specialized cells that detect variations in blood glucose or lipid concentrations. The hormones insulin and glucagon not only regulate glycemic levels through their action on these organs and the sympathetic and parasympathetic branches of the autonomic nervous system, which are activated by glucose or lipid sensors, but also modulate pancreatic hormone secretion and liver, muscle and fat glucose and lipid metabolism. Other signaling molecules, such as the adipocyte hormones leptin and adiponectin, have circulating plasma concentrations that reflect the level of fat stored in adipocytes. These signals are integrated at the level of the hypothalamus by the melanocortin pathway, which produces orexigenic and anorexigenic neuropeptides to control feeding behavior, energy expenditure and glucose homeostasis. Work from several laboratories, including ours, has explored the physiological role of glucose as a signal that regulates these homeostatic processes and has tested the hypothesis that the mechanism of glucose sensing that controls insulin secretion by the pancreatic beta-cells is also used by other cell types. I discuss here evidence for these mechanisms, how they integrate signals from other nutrients such as lipids and how their deregulation may initiate metabolic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims: The extent and molecular mechanisms governing plasma extravasation and formation of ascites in cirrhosis are unknown. Vascular endothelial growth factor-A (VEGF-A) and angiopoietin-2 (Ang-2) are endogenous substances with powerful vascular permeability effects. We assessed regional blood flow, vascular leakage, mRNA and tissular expression of VEGF-A and Ang-2 and vascular permeability following VEGF receptor 2 blockade in control and cirrhotic rats to define the vascular territories showing altered vascular permeability in cirrhosis and to determine whether VEGF-A and Ang-2 are involved in this phenomenon. Methods: Arterial blood flow was analysed with the coloured microsphere method. Vascular leakage was measured and visualised with the dye Evan¿s Blue and colloidal carbon techniques, respectively. VEGF-A and Ang-2 expression were determined by real-time polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. The effect on vascular permeability induced by VEGFR2 blockade was assessed by administration of the receptor inhibitor SU11248. Results: Arterial blood flow was increased in the mesentery, pancreas and small intestine but not in the kidney and spleen of cirrhotic rats as compared to controls. Increased vascular leakage was observed in the mesentery and liver, where colloidal carbon spread from microvessels to the adjacent fibrotic tracts. Increased hepatic and mesenteric expression of VEGF-A and Ang-2 was found in cirrhotic rats as compared to controls. Blockade of VEGFR2 markedly reduced hepatic and mesenteric vascular leakage in cirrhotic rats. Conclusions: Enhanced endothelial permeability is restricted to the hepatic and mesenteric vascular beds in cirrhotic rats with ascites and VEGF-A and Ang-2 are key factors in the signalling pathways regulating this dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current availability of five complete genomes of different primate species allows the analysis of genetic divergence over the last 40 million years of evolution. We hypothesized that the interspecies differences observed in susceptibility to HIV-1 would be influenced by the long-range selective pressures on host genes associated with HIV-1 pathogenesis. We established a list of human genes (n = 140) proposed to be involved in HIV-1 biology and pathogenesis and a control set of 100 random genes. We retrieved the orthologous genes from the genome of humans and of four nonhuman primates (Pan troglodytes, Pongo pygmaeus abeli, Macaca mulatta, and Callithrix jacchus) and analyzed the nucleotide substitution patterns of this data set using codon-based maximum likelihood procedures. In addition, we evaluated whether the candidate genes have been targets of recent positive selection in humans by analyzing HapMap Phase 2 single-nucleotide polymorphisms genotyped in a region centered on each candidate gene. A total of 1,064 sequences were used for the analyses. Similar median K(A)/K(S) values were estimated for the set of genes involved in HIV-1 pathogenesis and for control genes, 0.19 and 0.15, respectively. However, genes of the innate immunity had median values of 0.37 (P value = 0.0001, compared with control genes), and genes of intrinsic cellular defense had K(A)/K(S) values around or greater than 1.0 (P value = 0.0002). Detailed assessment allowed the identification of residues under positive selection in 13 proteins: AKT1, APOBEC3G, APOBEC3H, CD4, DEFB1, GML, IL4, IL8RA, L-SIGN/CLEC4M, PTPRC/CD45, Tetherin/BST2, TLR7, and TRIM5alpha. A number of those residues are relevant for HIV-1 biology. The set of 140 genes involved in HIV-1 pathogenesis did not show a significant enrichment in signals of recent positive selection in humans (intraspecies selection). However, we identified within or near these genes 24 polymorphisms showing strong signatures of recent positive selection. Interestingly, the DEFB1 gene presented signatures of both interspecies positive selection in primates and intraspecies recent positive selection in humans. The systematic assessment of long-acting selective pressures on primate genomes is a useful tool to extend our understanding of genetic variation influencing contemporary susceptibility to HIV-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6?8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface molecules of Staphylococcus aureus are involved in the colonization of vascular endothelium which is a crucial primary event in the pathogenesis of infective endocarditis (IE). The ability of these molecules to also launch endothelial procoagulant and proinflammatory responses, which characterize IE, is not known. In the present study we investigated the individual capacities of three prominent S. aureus surface molecules; fibronectin-binding protein A (FnBPA) and B (FnBPB) and clumping factor A (ClfA), to promote bacterial adherence to cultured human endothelial cells (ECs) and to activate phenotypic and functional changes in these ECs. Non-invasive surrogate bacterium Lactococcus lactis, which, by gene transfer, expressed staphylococcal FnBPA, FnBPB or ClfA molecules were used. Infection of ECs increased 50- to 100-fold with FnBPA- or FnBPB-positive recombinant lactococci. This coincided with EC activation, interleukin-8 secretion and surface expression of ICAM-1 and VCAM-1 and concomitant monocyte adhesion. Infection with ClfA-positive lactococci did not activate EC. FnBPA-positive L. lactis also induced a prominent tissue factor-dependent endothelial coagulation response that was intensified by cell-bound monocytes. Thus S. aureus FnBPs, but not ClfA, confer invasiveness and pathogenicity to non-pathogenic L. lactis organisms indicating that bacterium-EC interactions mediated by these adhesins are sufficient to evoke inflammation as well as procoagulant activity at infected endovascular sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-altitude pulmonary edema is a life-threatening condition occurring in predisposed but otherwise healthy individuals. It therefore permits the study of underlying mechanisms of pulmonary edema in the absence of confounding factors such as coexisting cardiovascular or pulmonary disease, and/or drug therapy. There is evidence that some degree of asymptomatic alveolar fluid accumulation may represent a normal phenomenon in healthy humans shortly after arrival at high altitude. Two fundamental mechanisms then determine whether this fluid accumulation is cleared or whether it progresses to HAPE: the quantity of liquid escaping from the pulmonary vasculature and the rate of its clearance by the alveolar respiratory epithelium. The former is directly related to the degree of hypoxia-induced pulmonary hypertension, whereas the latter is determined by the alveolar epithelial sodium transport. Here, we will review evidence that, in HAPE-prone subjects, impaired pulmonary endothelial and epithelial NO synthesis and/or bioavailability may represent a central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and, in turn, capillary stress failure and alveolar fluid flooding. We will then demonstrate that exaggerated pulmonary hypertension, although possibly a conditio sine qua non, may not always be sufficient to induce HAPE and how defective alveolar fluid clearance may represent a second important pathogenic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host defense to intracellular pathogens depends upon both innate and adaptive cell-mediated immune responses. Polymorphonuclear neutrophil leukocytes which belong to the innate immune system are the first cells that are recruited massively within hours of microbial infection. Neutrophils are the main players in the killing of microorganisms and recently new methods of killing including nets formation have been described. Neutrophils mediate tissue damage at infected sites. By promoting tissue injury neutrophils contribute to the initiation of inflammation, which is now recognized as an essential step in launching immunity. The importance of neutrophils as decision shaper in the development of an immune response is only emerging as they have long been considered by immunologists as short lived, non-dividing cells, of poor interest. Now, neutrophils are emerging as key components of the inflammatory response, and are shown to have immunoregulatory roles in microbial infections. In addition, neutrophils were also reported to contribute to the recruitment and activation of antigen presenting cells. Thus early interactions between neutrophils and surrounding cells may influence the development/resolution of both inflammatory lesion and pathogen-specific immune response. The impact of neutrophils on cells present at the site of infection are only beginning to be studied and deserves more attention.In this e-book the reader will find updated information about the role of neutrophils in the pathogenesis of 1) bacterial diseases including sepsis, mycobacteria and Chlamydia infections, and of 2) parasitic diseases including leishmaniasis and toxoplasmosis. The role of neutrophils in the protection against microorganisms has largely been underestimated and, until recently, their role was mostly thought to limited to a "kill and die" response. New neutrophil mode of killing, such as their release of extracellular traps to kill extracellular bacterial pathogens, together with several microbial strategies designed to escape NETs are presented in Chapter 1. We will emphasize standard and advanced light microscopy techniques that allowed major advances in the understanding of neutrophil biology, through the visualization of the interaction of selected pathogens with neutrophils in living animals (Chapter 2).The aim of this e-book is to provide an overview of the recent advances made in the field of neutrophil biology. It will provide a basis for understanding future development that will occur in this area, and provide the reader with a short overview of some of the exciting new directions in which neutrophil research is moving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Electrophysiological cardiac devices are increasingly used. The frequency of subclinical infection is unknown. We investigated all explanted devices using sonication, a method for detection of microbial biofilms on foreign bodies. METHODS AND RESULTS: Consecutive patients in whom cardiac pacemakers and implantable cardioverter/defibrillators were removed at our institution between October 2007 and December 2008 were prospectively included. Devices (generator and/or leads) were aseptically removed and sonicated, and the resulting sonication fluid was cultured. In parallel, conventional swabs of the generator pouch were performed. A total of 121 removed devices (68 pacemakers, 53 implantable cardioverter/defibrillators) were included. The reasons for removal were insufficient battery charge (n=102), device upgrading (n=9), device dysfunction (n=4), or infection (n=6). In 115 episodes (95%) without clinical evidence of infection, 44 (38%) grew bacteria in sonication fluid, including Propionibacterium acnes (n=27), coagulase-negative staphylococci (n=11), Gram-positive anaerobe cocci (n=3), Gram-positive anaerobe rods (n=1), Gram-negative rods (n=1), and mixed bacteria (n=1). In 21 of 44 sonication-positive episodes, bacterial counts were significant (>or=10 colony-forming units/mL of sonication fluid). In 26 sterilized controls, sonication cultures remained negative in 25 cases (96%). In 112 cases without clinical infection, conventional swab cultures were performed: 30 cultures (27%) were positive, and 18 (60%) were concordant with sonication fluid cultures. Six devices and leads were removed because of infection, growing Staphylococcus aureus, Streptococcus mitis, and coagulase-negative staphylococci in 6 sonication fluid cultures and 4 conventional swab cultures. CONCLUSIONS: Bacteria can colonize cardiac electrophysiological devices without clinical signs of infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the characteristics of micro-organisms in clinical specimens is essential for the rapid diagnosis and treatment of infections. A thorough investigation of the nanoscale properties of bacteria can prove to be a fundamental tool. Indeed, in the latest years, the importance of high resolution analysis of the properties of microbial cell surfaces has been increasingly recognized. Among the techniques available to observe at high resolution specific properties of microscopic samples, the Atomic Force Microscope (AFM) is the most widely used instrument capable to perform morphological and mechanical characterizations of living biological systems. Indeed, AFM can routinely study single cells in physiological conditions and can determine their mechanical properties with a nanometric resolution. Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work, we exploit the capabilities and peculiarities of AFM to analyze the mechanical properties of Escherichia coli in order to evidence with a high spatial resolution the mechanical properties of its structure. In particular, we will show that the bacterial membrane is not mechanically uniform, but contains stiffer areas. The force volume investigations presented in this work evidence for the first time the presence and dynamics of such structures. Such information is also coupled with a novel stiffness tomography technique, suggesting the presence of stiffer structures present underneath the membrane layer that could be associated with bacterial nucleoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isogenic Staphylococcus aureus strains with different capacities to produce sigma(B) activity were analyzed for their ability to attach to fibrinogen- or fibronectin-coated surfaces or platelet-fibrin clots and to cause endocarditis in rats. In comparison to the sigma(B)-deficient strain, BB255, which harbors an rsbU mutation, both rsbU-complemented and sigma(B)-overproducing derivatives exhibited at least five times greater attachment to fibrinogen- and fibronectin-coated surfaces and showed increased adherence to platelet-fibrin clots. No differences in adherence were seen between BB255 and a DeltarsbUVWsigB isogen. Northern blotting analyses revealed that transcription of clfA, encoding fibrinogen-binding protein clumping factor A, and fnbA, encoding fibronectin-binding protein A, were positively influenced by sigma(B). Sigma(B) overproduction resulted in a statistically significant increase in positive spleen cultures and enhanced bacterial densities in both the aortic vegetations and spleens at 16 h postinoculation. In contrast, at 72 h postinoculation, tissues infected with the sigma(B) overproducer had lower bacterial densities than did those infected with BB255. These results suggest that although sigma(B) appears to increase the adhesion of S. aureus to various host cell-matrix proteins in vitro, it has limited effect on pathogenesis in the rat endocarditis model. Sigma(B) appears to have a transient enhancing effect on bacterial density in the early stages of infection that is lost during progression.