946 resultados para bacterial growth


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the efficiency of natural biocides, brown and green propolis, for the control of bacterial contamination in the production of sugarcane spirit. The treatments consisted of brown and green propolis extracts, ampicillin, and a control and were assessed at the beginning and end of harvest season in ten fermentation cycles. In the microbiological analyses, the lactic acid bacteria were quantified in the inoculum before and after the treatment with biocides, and the viability of yeast cells during fermentation was evaluated. The levels of acids, glycerol, total residual reducing sugars, and ethanol were analyzed for the wine resulting from each fermentation cycle. A reduction in the number of bacterial contaminants in the inoculum in the treatments with the natural biocides was observed, but it did not affect the viability of yeast cells. The control of the contaminants led to the production of higher levels of ethanol and reduced acidity in the wine produced. The results of the use of brown and green propolis to control the growth microorganisms in the fermentation of sugarcane spirit can be of great importance for using alternative strategies to synthetic antibacterials in fermentation processes including other distilled beverage or spirits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Solobacterium moorei is a volatile sulfide compound (VSC)-producing Gram-positive anaerobic bacterium that has been associated with halitosis. The aim of this study was to investigate the effects of green tea extract and its major constituent epigallocatechin-3-gallate (EGCG) on growth and severalhalitosis-related properties of S. moorei.Methods: A microplate dilution assay was used to determine the antibacterial activity of green tea extract and EGCG against S. moorei. Their effects on bacterial cell membrane integrity were investigated by transmission electron microscopy and a fluorescence-based permeability assay. Biofilm formation was quantified by crystal violet staining. Adhesion of FITC-labeled S. moorei to oral epithelial cells was monitored by fluorometry. The modulation of beta-galactosidase gene expression in S. moorei was evaluated by quantitative RT-PCR.Results: The green tea extract as well as EGCG inhibited the growth of S. moorei, with MIC values of 500 and 250 mu g/ml, respectively. Transmission electron microscopy analysis and a permeabilization assay brought evidence that the bacterial cell membrane was the target of green tea polyphenols. Regarding the effects of green tea polyphenols on the S. moorei colonization properties, it was found that biofilm formation on EGCG-treated surfaces was significantly affected, and that green tea extract and EGCG can cause the eradication of pre-formed S. moorei biofilms. Moreover, both the green tea extract and EGCG were found to reduce the adherence of S. moorei to oral epithelial cells. The beta-galactosidase activity of S. moorei, which plays a key role in VSC production, was dose-dependently inhibited by green tea polyphenols. In addition, EGCG at 1/2 MIC significantly decreased the beta-galactosidase gene expression.Conclusion: Our study brought evidence to support that green tea polyphenols possess a number of properties that may contribute to reduce S. moorei-related halitosis. Therefore, these natural compounds may be of interest to be used to supplement oral healthcare products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suppression of plant diseases and growth promotion due to the action of endophytic microorganisms has been demonstrated in several pathosystems. Experiments under controlled conditions involving 234 endophytic bacteria and fungi isolated from coffee leaves, roots and branches were conducted with the objective of evaluating the germination inhibition of Hemileia vastatrix urediniospores, the control of coffee leaf rust development in tests with leaf discs and on plastic bags seedling, and to promote growth of coffee seedlings. None of the fungal isolates induced plant growth or reduced disease severity. The bacterial isolates (identified by the fatty acids profile analysis) 85G (Escherichia fergusonii), 161G, 163G, 160G, 150G (Acinetobacter calcoaceticus) and 109G (Salmonella enterica) increased plant growth, the maximum being induced by 85G. This isolate produced in vitro phosphatase and indol acetic acid. In assay to control rust on coffee leaf disc, nine bacterial isolates, 64R, 137G, 3F (Brevibacillus choshinensis), 14F (Salmonella enterica), 36F (Pectobacterium carotovorum), 109G (Bacillus megaterium), 115G (Microbacterium testaceum), 116G and 119G (Cedecea davisae) significantly reduced disease severity, when applied 72 or 24h before challenging with the pathogen. In seedling tests most disease severity reduction was achieved by the isolates 109G and 119G. There was no correspondence between the organisms that promoted seedling growth and those that reduced rust severity on seedlings or leaf discs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrophic bacterial and biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both and bacterioplankton biomass and activity along the estuary. While in the Northern region is light-limited, with mean production (PP) between 1.1 and 1.9 mu g C l(-1) h(-1) and mean specific growth rates (PSG) between 0.14 and 0.16 d(-1), the Southern region registered values as high as 24.7 mu g C l(-1) h(-1) for PP and 2.45 d(-1) (mean PP between 3.4 and 7.3 mu g C l(-1) h(-1); mean PSG between 0.28 and 0.57 d(-1)). On the other hand, maximum bacterial production (BP: 63.8 mu g C l(-1) h(-1)) and specific growth rate (BSG: 32.26 d(-1)) were observed in the Northern region (mean BP between 3.4 and 12.8 mu g C l(-1) h(-1); mean BSG between 1.98 and 6.67 day(-1)). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (similar to 45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10(3) in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1: pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1:pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1:pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant's growth and fitness.