944 resultados para axenic isolates
Resumo:
We report the sequences of two Klebsiella pneumoniae clinical isolates, strains JHCK1 and VA360, from a newborn with meningitis in Buenos Aires, Argentina, and from a tertiary care medical center in Cleveland, OH, respectively. Both isolates contain one chromosome and at least five plasmids; isolate VA360 contains the Klebsiella pneumoniae carbapenemase (KPC) gene
Resumo:
Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains.
Resumo:
We analyzed the in vitro susceptibility to several ?-lactams and vancomycin of 80 Aerococcus urinae isolates col- lected during 2011-2012 in Switzerland. MICs were determined by Etest (bioMérieux) on Müller-Hinton agar with 5% sheep blood and interpreted according to the CLSI and EUCAST criteria set for viridans streptococci. MIC50/90 for penicillin, amoxicillin, ceftriaxone and vancomycin were 0.016/0.064 mg/l, 0.032/0.064 mg/l, 0.125/0.5 mg/l and 0.38/0.5 mg/l, respectively. Three (3.8%) isolates were resistant to ceftriaxone regardless of the criteria used (MICs ?2 mg/l); one of them was also non-susceptible to penicillin (MIC of 0.25 mg/l) according to CLSI. ?-lactam resis- tance in A. urinae is a concern and suggests that more studies are needed to determine the molecular mechanisms of such resistance.
Resumo:
New therapeutic strategies are needed to combat the emergence of infections due to multidrug-resistant Neisseria gonorrhoeae (Ng). In this study, fosfomycin (FOS) was tested against 89 Ng using the Etest method and showing MIC50/90s of only 8/16 μg/ml (range ≤ 1-32 μg/ml). FOS in combination with ceftriaxone (CRO) or azithromycin (AZT) was then evaluated using the checkerboard method for eight strains, including F89 (CRO-resistant) and AZT-HLR (high-level AZT-resistant). All combinations including FOS gave indifferent effects (fractional inhibitory concentration [FIC] index values between 1.2-2.3 for FOS plus CRO and between 1.8-3.2 for FOS plus AZT). Time-kill experiments for FOS, CRO, AZT and their combinations (at concentrations of 0.5×, 1×, 2× and 4× MIC) were performed against ATCC 49226, one Ng of NG-MAST ST1407, F89 and AZT-HLR. For all strains, at 24 hours results indicated that: i) FOS was bactericidal at 2× MIC concentrations but after >24 hours there was re-growth of bacteria; ii) CRO was bactericidal at 0.5× MIC; iii) AZT was bactericidal at 4× MIC; iv) CRO plus AZT was less bactericidal than CRO alone; v) FOS plus AZT was bactericidal at 2× MIC; vi) CRO plus AZT and FOS plus CRO were both bactericidal at 0.5× MIC, but the latter had more rapid effects. FOS is appealing for the management of Ng infections because of its single and oral formulation. However, our results suggest its use in combination with CRO. This strategy could, after appropriate clinical trials, be implemented for the treatment of infections due to isolates possessing resistance to CRO and/or AZT.
Resumo:
BACKGROUND Small ruminant lentiviruses escaping efficient serological detection are still circulating in Swiss goats in spite of a long eradication campaign that essentially eliminated clinical cases of caprine arthritis encephalitis in the country. This strongly suggests that the circulating viruses are avirulent for goats.To test this hypothesis, we isolated circulating viruses from naturally infected animals and tested the in vitro and in vivo characteristics of these field isolates. METHODS Viruses were isolated from primary macrophage cultures. The presence of lentiviruses in the culture supernatants was monitored by reverse transcriptase assay. Isolates were passaged in different cells and their cytopathogenic effects monitored by microscopy. Proviral load was quantified by real-time PCR using customized primer and probes. Statistical analysis comprised Analysis of Variance and Bonferroni Multiple Comparison Test. RESULTS The isolated viruses belonged to the small ruminant lentiviruses A4 subtype that appears to be prominent in Switzerland. The 4 isolates replicated very efficiently in macrophages, displaying heterogeneous phenotypes, with two isolates showing a pronounced cytopathogenicity for these cells. By contrast, all 4 isolates had a poor replication capacity in goat and sheep fibroblasts. The proviral loads in the peripheral blood and, in particular, in the mammary gland were surprisingly high compared to previous observations. Nevertheless, these viruses appear to be of low virulence for goats except for the mammary gland were histopathological changes were observed. CONCLUSIONS Small ruminant lentiviruses continue to circulate in Switzerland despite a long and expensive caprine arthritis encephalitis virus eradication campaign. We isolated 4 of these lentiviruses and confirmed their phylogenetic association with the prominent A4 subtype. The pathological and histopathological analysis of the infected animals supported the hypothesis that these A4 viruses are of low pathogenicity for goats, with, however, a caveat about the potentially detrimental effects on the mammary gland. Moreover, the high proviral load detected indicates that the immune system of the animals cannot control the infection and this, combined with the phenotypic plasticity observed in vitro, strongly argues in favour of a continuous and precise monitoring of these SRLV to avoid the risk of jeopardizing a long eradication campaign.
Resumo:
Characterization of third-generation-cephalosporin-resistant Klebsiella pneumoniae isolates originating mainly from one human hospital (n = 22) and one companion animal hospital (n = 25) in Bern (Switzerland) revealed the absence of epidemiological links between human and animal isolates. Human infections were not associated with the spread of any specific clone, while the majority of animal infections were due to K. pneumoniae sequence type 11 isolates producing plasmidic DHA AmpC. This clonal dissemination within the veterinary hospital emphasizes the need for effective infection control practices.
Resumo:
OBJECTIVE To evaluate differences in bacterial numbers, identity, and susceptibility in samples obtained from the tympanic cavity on entry (preflush) and after evacuation and lavage (postflush) and assess perioperative and empiric antimicrobial selection in dogs that underwent total ear canal ablation (TECA) with lateral bulla osteotomy (LBO) or reoperation LBO. DESIGN Prospective clinical study. ANIMALS 34 dogs. PROCEDURE TECA with LBO or reoperation LBO was performed on 47 ears. Pre- and postflush aerobic and anaerobic samples were obtained from the tympanic cavity. Isolates and antimicrobial susceptibility patterns were compared. RESULTS Different isolates (31/44 [70%] ears) and susceptibility patterns of isolate pairs (6/44 [14%] ears) were detected in pre- and postflush samples from 84% of ears. Evacuation and lavage of the tympanic cavity decreased the number of bacterial isolates by 33%. In 26% of ears, bacteria were isolated from post-flush samples but not preflush samples. Only 26% of isolates tested were susceptible to cefazolin. At least 1 isolate from 53% of dogs that received empirically chosen antimicrobials postoperatively was resistant to the selected drugs. Anaerobic bacteria were recovered from 6 ears. CONCLUSIONS AND CLINICAL RELEVANCE Accurate microbiologic assessment of the tympanic cavity should be the basis for selection of antimicrobials in dogs undergoing TECA with LBO. Bacteria remain in the tympanic cavity after evacuation and lavage. Cefazolin was a poor choice for dogs that underwent TECA with LBO, as judged on the basis of culture and susceptibility testing results.
Resumo:
Background Bovine besnoitiosis, caused by the protozoan Besnoitia besnoiti, reduces productivity and fertility of affected herds. Besnoitiosis continues to expand in Europe and no effective control tools are currently available. Experimental models are urgently needed. Herein, we describe for the first time the kinetics of standardised in vitro models for the B. besnoiti lytic cycle. This will aid to study the pathogenesis of the disease, in the screening for vaccine targets and drugs potentially useful for the treatment of besnoitiosis. Methods We compared invasion and proliferation of one B. tarandi (from Finland) and seven B. besnoiti isolates (Bb-Spain1, Bb-Spain2, Bb-Israel, Bb-Evora03, Bb-Ger1, Bb-France, Bb-Italy2) in MARC-145 cell culture. Host cell invasion was studied at 4, 6, 8 and 24 h post infection (hpi), and proliferation characteristics were compared at 24, 48, 72, 96, 120, and 144 hpi. Results In Besnoitia spp., the key parameters that determine the sequential adhesion-invasion, proliferation and egress steps are clearly distinct from those in the related apicomplexans Toxoplasma gondii and Neospora caninum. Besnoitia spp. host cell invasion is a rather slow process, since only 50 % of parasites were found intracellular after 3–6 h of exposure to host cells, and invasion still took place after 24 h. Invasion efficacy was significantly higher for Bb-France, Bb-Evora03 and Bb-Israel. In addition, the time span for endodyogeny to take place was as long as 18–35 h. Bb-Israel and B. tarandi isolates were most prolific, as determined by the tachyzoite yield at 72 hpi. The total tachyzoite yield could not be predicted neither by invasion-related parameters (velocity and half time invasion) nor by proliferation parameters (lag phase and doubling time (dT)). The lytic cycle of Besnoitia was asynchronous as evidenced by the presence of three different plaque-forming tachyzoite categories (lysis plaques, large and small parasitophorous vacuoles). Conclusions This study provides first insights into the lytic cycle of B. besnoiti isolates and a standardised in vitro model that allows screening of drug candidates for the treatment of besnoitiosis.
Resumo:
Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4 isolates from porcine tonsils, as well as from feces, show the same virulence-associated gene pattern and antibiotic resistance properties as human isolates from clinical cases, consistent with the etiological role of porcine BT 4 in human yersiniosis. Thus, cross-contamination of carcasses and organs at slaughter with porcine Y. enterocolitica BT 4 strains, either from tonsils or feces, must be prevented to reduce human yersiniosis.
Resumo:
For the first time, we analyzed the clonality and susceptibility of Burkholderia cepacia complex isolates (n=55) collected during 1998-2013 from 44 Swiss cystic fibrosis (CF)-patients. B. cenocepacia (n=28) and B. multivorans (n=14) were mainly of sequence type (ST) 833 and ST874, respectively; B. contaminans isolates were of ST102. Overall, the following MIC50/90s (mg/l) were obtained: piperacillin/tazobactam (≤ 4/≥ 128), ticarcillin/clavulanate (≥ 256/≥256), ceftazidime (2/≥ 32), aztreonam (16/≥ 32), meropenem (2/8), tobramycin (8/≥ 16), minocycline (≤ 1/16), levofloxacin (≤ 0.5/≥ 16), and trimethoprim/sulfamethoxazole (≤ 0.5/4). This is the first survey providing information on the clonality of Bcc detected in Switzerland. Species identification and antimicrobial susceptibility tests should always be routinely performed to adapt more targeted therapies.
Resumo:
Infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) have been of great concern in hospitals due the difficulty in treating virulent, antibiotic resistant microorganisms in sensitive populations including children, the elderly, and immunocomprimised individuals. Since the late 1990's, MRSA infections have become a problem in the general community, and the strains of S. aureus that cause infections in the community are known to be genetically different than the hospital acquired strains. Community-acquired strains tend to be more virulent, affecting even relatively healthy individuals, and disease presentation tends to be more diverse than diseases observed in patients suffering from hospital-acquired strains. From the year 2000 to the present, there has been a significant increase in community-acquired infections in children, a population already particularly sensitive to S. aureus infection. Genotyping the strains of CA-MRSA circulating in the pediatric population is an important step in developing better antibiotic treatment strategies. Additionally, determining the carriage status of individuals in this population and comparing these data with strain genotypes will also be valuable in establishing prevention and control practices. ^
Resumo:
Trehalose dimycolate (TDM) is a mycobacterial glycolipid that is released from the surface of virulent M. tuberculosis. We evaluated the rate of growth, colony characteristics and production of TDM by Mycobacterium tuberculosis strains isolated from different clinical sites. Since detergent removes TDM from organisms, we analyzed growth rate and colony morphology of 79 primary clinical isolates grown as pellicles on the surface of detergent free Middlebrook 7H9 media. The genotype of each had been previously characterized. TDM production was measured by thin layer chromatography on 32 of these isolates. We found that strains isolated from pulmonary sites produced large amounts of TDM, grew rapidly as thin spreading pellicles, showed early cording (<1 week) and climbed the sides of the dish. In contrast, the extrapulmonary isolates (lymph node and bone marrow) produced less TDM (p<0.01), grew as discrete patches with little tendency to spread or climb the walls (p<0.02). The Beijing pulmonary (BP) isolates produced more TDM than non Beijing pulmonary isolates. The largest differences were observed in Beijing strains. The Beijing pulmonary isolates produced more TDM and grew faster than the Beijing extrapulmonary isolates (p<0.01). This was true even when the pulmonary and extrapulmonary isolates were derived from the same clade. These growth characteristics were consistently observed only on the first passage after primary isolation. This suggests that the differences in growth rate and TDM production observed reflect differences in gene expression patterns of pulmonary and extrapulmonary infections, that Mycobacterium tuberculosis in the lung grows more rapidly and produces more TDM than it does in extrapulmonary sites. This provides new opportunities to investigate gene expression of Mycobacterium tuberculosis in human.^
Resumo:
Detection of multidrug-resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes 2 or more weeks to identify by culture. RIF-resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative polymerase chain reaction (qPCR) is a novel approach that takes ≤2 days. However, qPCR identification of resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader dependent and limits its clinical use. The aim of this study was to develop an objective, reader-independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from 2 regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: the Texas–Mexico border and Colombia. Using coded DNA specimens, mutations within an 81-bp hot spot region of rpoB were established by qPCR with 5 beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and RIF-resistant bacteria. Only then had the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF-resistance by culture phenotype and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the mathematical approach has advantages over the visual reading, in that it uses a Microsoft Excel template to eliminate reader bias or inexperience, and allows objective interpretation from high-throughput analyses even in the presence of a mixture of RIF-resistant and RIF-susceptible isolates without the need for reader training.^