948 resultados para autosomal recessive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a recessive mutation, immune deficiency (imd), that impairs the inducibility of all genes encoding antibacterial peptides during the immune response of Drosophila. When challenged with bacteria, flies carrying this mutation show a lower survival rate than wild-type flies. We also report that, in contrast to the antibacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background. These results point to the existence of two different pathways leading to the expression of two types of target genes, encoding either the antibacterial peptides or the antifungal peptide drosomycin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in genes encoding membrane proteins have been associated with cell death of unknown cause from invertebrate development to human degenerative diseases. A point mutation in the gene for myelin proteolipid protein (PLP) underlies oligodendrocyte death and dysmyelination in jimpy mice, an accurate model for Pelizaeus-Merzbacher disease. To distinguish the loss of PLP function from other effects of the misfolded protein, we took advantage of the X chromosomal linkage of the gene and have complemented jimpy with a wild-type PLP transgene. In this artificial heterozygous situation, the jimpy mutation emerged as genetically dominant. At the cellular level oligodendrocytes showed little increase in survival although endogenous PLP gene and autosomal transgene were truly coexpressed. In surviving oligodendrocytes, wild-type PLP was functional and immunodetectable in myelin. Moreover, compacted myelin sheaths regained their normal periodicity. This strongly suggests that, despite the presence of functional wild-type PLP, misfolded jimpy PLP is by itself the primary cause of abnormal oligodendrocyte death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utrophin gene is closely related to the dystrophin gene in both sequence and genomic structure. The Duchenne muscular dystrophy (DMD) locus encodes three 14-kb dystrophin transcripts in addition to several smaller isoforms, one of which, Dp116, is specific to peripheral nerve. We describe here the corresponding 5.5-kb mRNA from the utrophin locus. This transcript, designated G-utrophin, is of particular interest because it is specifically expressed in the adult mouse brain and appears to be the predominant utrophin transcript in this tissue. G-utrophin is expressed in brain sites generally different from the regions expressing beta-dystroglycan. During mouse embryogenesis G-utrophin is also seen in the developing sensory ganglia. Our data confirm the close evolutionary relationships between the DMD and utrophin loci; however, the functions for the corresponding proteins probably differ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Lisosomal Acid Lipase Deficiency (LALD), historical known as Cholesterol Ester Storage Disease (CESD), is an autosomal lisosomal storage recessive disorder and an unrecognized cause of dyslipidaemia. Mutations in LIPA gene are the underlying cause of LALD, being a mutation in the splice site of exon 8 the most common cause of the disease. Patients with LALD present dyslipidaemia and altered liver function. The aim of this work was to analyze LIPA gene in patients with unexplained dyslipidaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last months, the number of reports on Holstein calves suffering from incurable idiopathic diarrhea dramatically increased. Affected calves showed severe hypocholesterolemia and mostly died within days up to a few months after birth. This new autosomal monogenic recessive inherited fat metabolism disorder, termed cholesterol deficiency (CD), is caused by a loss of function mutation of the bovine gene. The objective of the present study was to investigate specific components of lipid metabolism in 6 homozygous for the mutation (CDS) and 6 normal Holstein calves with different genotypes. Independent of sex, CDS had significantly lower plasma concentrations of total cholesterol (TC), free cholesterol (FC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triacylglycerides (TAG), and phospholipids (PL) compared with homozygous wild-type calves ( < 0.05). Furthermore, we studied the effect of the genotype on cholesterol metabolism in adult Holstein breeding bulls of Swissgenetics. Among a total of 254 adult males, the homozygous mutant genotype was absent, 36 bulls were heterozygous carriers (CDC), and 218 bulls were homozygous wild-type (CDF). In CDC bulls, plasma concentrations of TC, FC, HDL-C, LDL-C, VLDL-C, TAG, and PL were lower compared with CDF bulls ( < 0.05). The ratios of FC:cholesteryl esters (CE) and FC:TC were higher in CDC bulls compared with CDF bulls, whereas the ratio of CE:TC was lower in CDC bulls compared with CDF bulls ( < 0.01). In conclusion, the CD-associated mutation was shown to affect lipid metabolism in affected Holstein calves and adult breeding bulls. Besides cholesterol, the concentrations of PL, TAG, and lipoproteins also were distinctly reduced in homozygous and heterozygous carriers of the mutation. Beyond malabsorption of dietary lipids, deleterious effects of apolipoprotein B deficiency on hepatic lipid metabolism, steroid biosynthesis, and cell membrane function can be expected, which may result in unspecific symptoms of reduced fertility, growth, and health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Work performed at the University of Rochester.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine the mode of inheritance of congenital proportionate dwarfism in Angus and Angus crossbred cattle, initially detected in two commercial beef herds in northern New South Wales. Design Matings of normal carrier sires to unrelated cows of diverse breeds, and of one carrier sire to his unaffected daughters. An unrelated Piedmontese bull was also mated to unaffected daughters of the carrier sires. Procedure Two carrier Angus bulls and nine unaffected daughters, all of whom were completely indistinguishable from normal animals, were purchased for controlled breeding studies under known nutritional and disease conditions. Affected and carrier individuals were examined for the presence of obvious chromosomal abnormalities. Results Angus dwarfism has been successfully reproduced under controlled experimental conditions over successive years using unrelated dams and is undoubtedly heritable. The high frequency of occurrence of affected individuals (23/61 = 0.38 +/- .06) among the progeny of matings of the Angus sires to unrelated females of diverse breeding is not compatible with recessive inheritance, because of the negligible frequency of proportionate dwarfism in the breeds of the dams. Both paternal and maternal transmission of the defect was demonstrated, so that imprinting in the strict sense of a gene that is only expressed when received from the male parent appears not to be involved. Tested individuals showed no evidence of gross chromosomal abnormality. Dominant autosomal inheritance with incomplete penetrance was indicated by the lack of expression of the defective gene in the two Angus sires and in three unaffected daughters who produced dwarf calves from matings to the Piedmontese bull. Conclusions The mode of inheritance is that of a single autosomal dominant gene with a penetrance coefficient of 0.75 +/- 0.12, estimated from the observed incidence of 23/61 affected offspring of the two carrier Angus bulls mated to unrelated dams. Simple genetic models involving either (i) an unstable mutant which changes at high frequency to the expressed dominant dwarfing allele during gametogenesis, or (ii) a dominant allele with penetrance determined by an unlinked modifying locus, are shown to be compatible with the experimental data. Both models indicate that penetrance of the dwarfing gene may possibly be higher in matings involving carrier daughters of the two Angus bulls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence, mode of inheritance and urinalysis findings in Bull Terriers with polycystic kidney disease were assessed by screening 150 clinically normal dogs. The disorder was diagnosed in 39 dogs on the basis of renal ultrasound results and family history of the disease. In equivocal cases confirmation required gross and histopathological renal examination. Necropsy was performed on nine affected dogs and the kidneys from another five affected animals were also examined. Renal cysts were usually bilateral, occurred in cortex and medulla and varied from less than 1 mm to over 2.5 cm in diameter. Cysts were lined by epithelial cells of nephron origin. Abnormal urine sediment and proteinuria were common in affected dogs. The disease appears to be inherited in a highly penetrant autosomal dominant manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NIHR BioResource-Rare Diseases and the ThromboGenomics sequencing projects are supported by the National Institute for Health Research (NIHR; http://www.nihr.ac.uk). KB is an NIHR academic clinical fellow. SKW is supported by a Medical Research Council (MRC) Clinical Training Fellowship (MR/K023489/1). KS and ET are supported by the NIHR BioResource Rare Diseases. CSW and NJM are supported by the British Heart Foundation (FS/11/2/28579). ADM is supported by the NIHR Bristol Cardiovascular Biomedical Research Unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to rice virus diseases is an important requirement in many Southeast Asian rice breeding programs. Inheritance of resistance to rice tungro spherical virus (RTSV) in TW5, a near-isogenic line derived from Indonesian rice cultivar Utri Merah, was compared to that in TKM6, an Indian rice cultivar. Both TKM6 and Utri Merah are cultivars resistant to RTSV infections. Crosses were made between TKM6 and TN1, a susceptible cultivar, and between TW5 and TN1, and F3 lines were evaluated for their resistance to RTSV using two RTSV inoculum sources and a serological assay (ELISA). In TKM6, the resistance to the mixture of RTSV-V + RTBV inoculum source was controlled by a single recessive gene, whereas in TW5, the resistance was controlled by two recessive genes. A single recessive gene, however, controlled the resistance in TW5 when another RTSV variant, RTSV-VI, was used, suggesting that the resistance in TW5 depends on the nature of the RTSV inoculum used. RT-PCR, sequence, and phylogenetic analyses confirmed that RTSV-VI inoculum differs from RTSV-V inoculum and accurate phenotyping of the resistance to RTSV requires the use of a genetic marker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arguably, the most common patient seen in contact lens practice in our communities is the young adult white myope. The incidence of eye disease in this group of patients is very low, particularly if the genetically determined problems are excluded. However, there is one condition that should always be anticipated and searched for, especially in males. In fact, it affects 2-4% of these individuals and is known as pigment dispersion syndrome. This is important because 25-50% of these patients will get secondary or pigmentary glaucoma because of the pigment dispersion. It can be inherited as an autosomal dominant trait and has been mapped to chromosome 7. It is usually bilateral and is rarely encountered in patients of darker skin such as Asians and African-Americans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial hemiplegic migraine (FHM) is a rare autosomal dominant subtype of migraine with aura. It is divided into three subtypes FHM1, FHM2 and FHM3, which are caused by mutations in the CACNA1A, ATP1A2 and SCN1A genes respectively. As part of a regular diagnostic service, we investigated 168 patients with FHM symptoms. Samples were tested for mutations contained within the CACNA1A gene. Some tested samples (4.43%) showed an FHM1 mutation, with five of the mutations found in exon 5, one mutation in exon 16 and one in exon 17. Four polymorphisms were also detected, one of which occurred in a large percentage of samples (14.88%). The exon 16 2094G>A polymorphism, however, has been found to occur in healthy Caucasian control populations up to a frequency of 16% and is not considered to be significantly associated with FHM. A finding of significance, found in a single patient, was the detection of a novel mutation in exon 5 that results in a P225H change. The affected individual was an 8-year-old female. The exact phenotypic effect of this mutation is unknown, and further studies are needed to understand the pathophysiology of this mutation in FHM1. New information will allow for diagnostic procedures to be constantly updated, thus improving accuracy of diagnosis. It is possible that new information will also aid the development of new therapeutic agents for the treatment of FHM.