905 resultados para automated registration
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.
Resumo:
Craniosynostosis consists of a premature fusion of the sutures in an infant skull that restricts skull and brain growth. During the last decades, there has been a rapid increase of fundamentally diverse surgical treatment methods. At present, the surgical outcome has been assessed using global variables such as cephalic index, head circumference, and intracranial volume. However, these variables have failed in describing the local deformations and morphological changes that may have a role in the neurologic disorders observed in the patients. This report describes a rigid image registration-based method to evaluate outcomes of craniosynostosis surgical treatments, local quantification of head growth, and indirect intracranial volume change measurements. The developed semiautomatic analysis method was applied to computed tomography data sets of a 5-month-old boy with sagittal craniosynostosis who underwent expansion of the posterior skull with cranioplasty. Quantification of the local changes between pre- and postoperative images was quantified by mapping the minimum distance of individual points from the preoperative to the postoperative surface meshes, and indirect intracranial volume changes were estimated. The proposed methodology can provide the surgeon a tool for the quantitative evaluation of surgical procedures and detection of abnormalities of the infant skull and its development.
Resumo:
This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.
Resumo:
Iterative Closest Point (ICP) is a widely exploited method for point registration that is based on binary point-to-point assignments, whereas the Expectation Conditional Maximization (ECM) algorithm tries to solve the problem of point registration within the framework of maximum likelihood with point-to-cluster matching. In this paper, by fulfilling the implementation of both algorithms as well as conducting experiments in a scenario where dozens of model points must be registered with thousands of observation points on a pelvis model, we investigated and compared the performance (e.g. accuracy and robustness) of both ICP and ECM for point registration in cases without noise and with Gaussian white noise. The experiment results reveal that the ECM method is much less sensitive to initialization and is able to achieve more consistent estimations of the transformation parameters than the ICP algorithm, since the latter easily sinks into local minima and leads to quite different registration results with respect to different initializations. Both algorithms can reach the high registration accuracy at the same level, however, the ICP method usually requires an appropriate initialization to converge globally. In the presence of Gaussian white noise, it is observed in experiments that ECM is less efficient but more robust than ICP.
Resumo:
An automated algorithm for detection of the acetabular rim was developed. Accuracy of the algorithm was validated in a sawbone study and compared against manually conducted digitization attempts, which were established as the ground truth. The latter proved to be reliable and reproducible, demonstrated by almost perfect intra- and interobserver reliability. Validation of the automated algorithm showed no significant difference compared to the manually acquired data in terms of detected version and inclination. Automated detection of the acetabular rim contour and the spatial orientation of the acetabular opening plane can be accurately achieved with this algorithm.