938 resultados para auditory evoked potentials
Resumo:
This paper compares the auditory steady state response (ASSR) thresholds with the click-evoked and tone burst auditory brainstem response (ABR) thresholds in their ability to predict known behavioral thresholds in normal-hearing adults.
Resumo:
The piriform cortex (PC) is highly prone to epileptogenesis, particularly in immature animals, where decreased muscarinic modulation of PC intrinsic fibre excitatory neurotransmission is implicated as a likely cause. However, whether higher levels of acetylcholine (ACh) release occur in immature vs. adult PC remains unclear. We investigated this using in vitro extracellular electrophysiological recording techniques. Intrinsic fibre-evoked extracellular field potentials (EFPs) were recorded from layers II to III in PC brain slices prepared from immature (P14-18) and adult (P>40) rats. Adult and immature PC EFPs were suppressed by eserine (1muM) or neostigmine (1muM) application, with a greater suppression in immature ( approximately 40%) than adult ( approximately 30%) slices. Subsequent application of atropine (1muM) reversed EFP suppression, producing supranormal ( approximately 12%) recovery in adult slices, suggesting that suppression was solely muscarinic ACh receptor-mediated and that some 'basal' cholinergic 'tone' was present. Conversely, atropine only partially reversed anticholinesterase effects in immature slices, suggesting the presence of additional non-muscarinic modulation. Accordingly, nicotine (50muM) caused immature field suppression ( approximately 30%) that was further enhanced by neostigmine, whereas it had no effect on adult EFPs. Unlike atropine, nicotinic antagonists, mecamylamine and methyllycaconitine, induced immature supranormal field recovery ( approximately 20%) following anticholinesterase-induced suppression (with no effect on adult slices), confirming that basal cholinergic 'tone' was also present. We suggest that nicotinic inhibitory cholinergic modulation occurs in the immature rat PC intrinsic excitatory fibre system, possibly to complement the existing, weak muscarinic modulation, and could be another important developmentally regulated system governing immature PC susceptibility towards epileptogenesis.
Resumo:
Purpose. Some children with visual stress and/or headaches have fewer symptoms when wearing colored lenses. Although subjective reports of improved perception exist, few objective correlates of these effects have been established. Methods. In a pilot study, 10 children who wore Intuitive Colorimeter lenses, and claimed benefit, and two asymptomatic children were tested. Steady-state potentials were measured in response to low contrast patterns modulating at a frequency of 12 Hz. Four viewing conditions were compared: 1) no lens; 2) Colorimeter lens; 3) lens of complementary color; and 4) spectrally neutral lens with similar photopic transmission. Results. The asymptomatic children showed little or no difference between the lens and no lens conditions. When all the symptomatic children were tested together, a similar result was found. However, when the symptomatic children were divided into two groups depending on their symptoms, an interaction emerged. Children with visual stress but no headaches showed the largest amplitude visual evoked potential response in the no lens condition, whereas those children whose symptoms included severe headaches or migraine showed the largest amplitude visual evoked potential response when wearing their prescribed lens. Conclusions. The results suggest that it is possible to measure objective correlates of the beneficial subjective perceptual effects of colored lenses, at least in some children who have a history of migraine or severe headaches.
Resumo:
Using simultaneous electroencephalography as a measure of ongoing activity and functional magnetic resonance imaging (fMRI) as a measure of the stimulus-driven neural response, we examined whether the amplitude and phase of occipital alpha oscillations at the onset of a brief visual stimulus affects the amplitude of the visually evoked fMRI response. When accounting for intrinsic coupling of alpha amplitude and occipital fMRI signal by modeling and subtracting pseudo-trials, no significant effect of prestimulus alpha amplitude on the evoked fMRI response could be demonstrated. Regarding the effect of alpha phase, we found that stimuli arriving at the peak of the alpha cycle yielded a lower blood oxygenation level-dependent (BOLD) fMRI response in early visual cortex (V1/V2) than stimuli presented at the trough of the cycle. Our results therefore show that phase of occipital alpha oscillations impacts the overall strength of a visually evoked response, as indexed by the BOLD signal. This observation complements existing evidence that alpha oscillations reflect periodic variations in cortical excitability and suggests that the phase of oscillations in postsynaptic potentials can serve as a mechanism of gain control for incoming neural activity. Finally, our findings provide a putative neural basis for observations of alpha phase dependence of visual perceptual performance.
Resumo:
We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin–Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5 Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations.
Resumo:
Although promise exists for patterns of resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi-laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two-dimensional optical imaging spectroscopy measurements of resting-state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural ‘events’ were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural ‘events’ and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting-state haemodynamic fluctuations taken after neural ‘events’ closely resembled the temporal profile of stimulus-evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting-state haemodynamic fluctuations resembling the temporal profile of stimulus-evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting-state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus-evoked neurovascular responses.
Resumo:
Little is known about the way speech in noise is processed along the auditory pathway. The purpose of this study was to evaluate the relation between listening in noise using the R-Space system and the neurophysiologic response of the speech-evoked auditory brainstem when recorded in quiet and noise in adult participants with mild to moderate hearing loss and normal hearing.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
Diabetes Mellitus may lead to alterations in the eyes, kidneys, cranial nerves, peripheral nerves, ears etc. The cognitive function, also, seems to be compromised in subjects presented with Diabetes Mellitus, since the cortical and subcortical structures responsible for this function are hindered in some insulin-dependent patients. The cognitive potential P300 has been used as an objective procedure to assess cerebral cognitive functions. Objective: Analyze the sensitivity of P300 cognitive potential for the detection of alterations on the auditory cortex secondary to Diabetes Mellitus. Study design: transversal cohort. Material and Method: Sixteen diabetic subjects of both genders aged 7 to 71 years, and seventeen non-diabetic individuals at the same age range participated in this study, the evaluation procedures were pure tone audiometry (PTA) and P300 cognitive potential. Glycemia of the group presented with Diabetes was assessed prior to applying the P300. Results: No statistically significant difference was shown for the PTA results. A statically significant difference was observed between groups when analyzing the latency of the P300 component measured in Fz. there was a correlation between glycemia and the latency and amplitude of P300. Conclusion: The investigation of the cognitive potential of P300 is an important procedure for the prevention and early diagnosis of neurological changes in individuals presented with Diabetes Mellitus.
Resumo:
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Transient rhythmic network activity in the somatosensory cortex evoked by distributed input in vitro
Resumo:
The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.
Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity
Resumo:
$\rm\underline{L}$ong-$\rm\underline{t}$erm $\rm\underline{p}$otentiation (LTP) is a candidate cellular mechanism underlying mammalian learning and memory. Protocols that induce LTP typically involve afferent stimulation. The experiments described in this dissertation tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induces LTP in hippocampal slices without afferent stimulation (ionto-LTP). Ionto-LTP is induced when excitatory postsynaptic potentials are completely blocked with adenosine and $\rm\underline{t}$etrodo$\rm\underline{t}$o$\rm\underline{x}$in (TTX). These results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.^ In testing the role of pre-and postsynaptic mechanisms in LTP expression whole-cell recordings were used to examine the frequency and amplitude of $\rm\underline{s}$pontaneous $\rm\underline{e}$xcitatory $\rm\underline{p}$o$\rm\underline{s}$ynaptic $\rm\underline{c}$urrents (sEPSCs) in CA1 pyramidal neurons. sEPSCs where comprised of an equal mixture of TTX insensitive miniature EPSCs and sEPSCs that appeared to result from spontaneous action potentials (i.e., TTX sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by CNQX, suggesting that sEPSCs were glutamate mediated synaptic events. Changes in the amplitude and frequency sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. The findings of this dissertation show that ionto-LTP expression results from increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. Therefore, alternative mechanisms are also considered in this dissertation. Models based on increased release probability for action potential dependent transmitter release appear insufficient to explain our results. The most straightforward interpretation of the results in this dissertation is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated by postsynaptic mechanisms. ^
Resumo:
OBJECTIVE Ocular vestibular-evoked myogenic potentials (oVEMPs) represent extraocular muscle activity in response to vestibular stimulation. The authors sought to investigate whether posture-induced increase of the intracranial pressure (ICP) modulated oVEMP frequency tuning, that is, the amplitude ratio between 500-Hz and 1000-Hz stimuli. DESIGN Ten healthy subjects were enrolled in this study. The subjects were positioned in the horizontal plane (0 degree) and in a 30-degree head-downwards position to elevate the ICP. In both positions, oVEMPs were recorded using 500-Hz and 1000-Hz air-conducted tone bursts. RESULTS When tilting the subject from the horizontal plane to the 30-degree head-down position, oVEMP amplitudes in response to 500-Hz tone bursts distinctly decreased (3.40 μV versus 2.06 μV; p < 0.001), whereas amplitudes to 1000 Hz were only slightly diminished (2.74 μV versus 2.48 μV; p = 0.251). Correspondingly, the 500/1000-Hz amplitude ratio significantly decreased when tilting the subjects from 0- to 30-degree inclination (1.59 versus 1.05; p = 0.029). Latencies were not modulated by head-down position. CONCLUSIONS Increasing ICP systematically alters oVEMPs in terms of absolute amplitudes and frequency tuning characteristics. oVEMPs are therefore in principle suited for noninvasive ICP monitoring.
Resumo:
Recent studies of corticofugal modulation of auditory information processing indicate that cortical neurons mediate both a highly focused positive feedback to subcortical neurons “matched” in tuning to a particular acoustic parameter and a widespread lateral inhibition to “unmatched” subcortical neurons. This cortical function for the adjustment and improvement of subcortical information processing is called egocentric selection. Egocentric selection enhances the neural representation of frequently occurring signals in the central auditory system. For our present studies performed with the big brown bat (Eptesicus fuscus), we hypothesized that egocentric selection adjusts the frequency map of the inferior colliculus (IC) according to auditory experience based on associative learning. To test this hypothesis, we delivered acoustic stimuli paired with electric leg stimulation to the bat, because such paired stimuli allowed the animal to learn that the acoustic stimulus was behaviorally important and to make behavioral and neural adjustments based on the acquired importance of the acoustic stimulus. We found that acoustic stimulation alone evokes a change in the frequency map of the IC; that this change in the IC becomes greater when the acoustic stimulation is made behaviorally relevant by pairing it with electrical stimulation; that the collicular change is mediated by the corticofugal system; and that the IC itself can sustain the change evoked by the corticofugal system for some time. Our data support the hypothesis.
Resumo:
During metamorphosis, ranid frogs shift from a purely aquatic to a partly terrestrial lifestyle. The central auditory system undergoes functional and neuroanatomical reorganization in parallel with the development of new sound conduction pathways adapted for the detection of airborne sounds. Neural responses to sounds can be recorded from the auditory midbrain of tadpoles shortly after hatching, with higher rates of synchronous neural activity and lower sharpness of tuning than observed in postmetamorphic animals. Shortly before the onset of metamorphic climax, there is a brief “deaf” period during which no auditory activity can be evoked from the midbrain, and a loss of connectivity is observed between medullary and midbrain auditory nuclei. During the final stages of metamorphic development, auditory function and neural connectivity are restored. The acoustic communication system of the adult frog emerges from these periods of anatomical and physiological plasticity during metamorphosis.