972 resultados para antimicrobial activity
Resumo:
Ozonation of sunflower oils with genetic modification High Oleic and High Oleic-Palmitic (AO and PO respectively) and without modification, High Linoleic (AL) at different applied ozone dosages was carried out with measurement of peroxide and acidity indexes values, fatty acids composition, oxygen percentage content and antimicrobial activity. The comparison of peroxides indexes and oxygen content at different applied ozone dosages in each oil showed good correlation (r = 0,99). Higher amount of oleic acid was consumed at higher applied ozone dosage in PO oil than AO oil, which can be related to the increase of acidity index. The antimicrobial activity was better for AL and PO ozonized oils.
Resumo:
The antimicrobial properties of the hexane, hexane/EtOAc and methanol fractions of the fresh petioles of Sagittaria montevidensis ssp montevidensis (Alismataceae) were evaluated against fungi and Gram-negative and Gram-positive bacteria. A new abietatriene-type diterpenoid, 3β,7α-dihydroxi-abieta-8,11,13-triene and the known 3β-hydroxy-abieta-8,11,13-trien-7-one were isolated from the most active fraction tested and the structures of these compounds were elucidated by data including IR, EIMS, and 1D and 2D NMR spectra.
Resumo:
The essential oils of seven Myrtaceae species were investigated for its chemical composition and antibacterial activity. The volatile oils were characterized by a high content of monoterpenoids of which 1,8-cineole (88.0, 65.0 and 77.0% for Melaleuca hypericifolia, Callistemon viminalis and Callistemon citrinus respectively), terpinen-4-ol (47.0 and 49.8% for Melaleuca thymifolia and Callistemon polandii respectively) and α-pinene (54.5% for Kunzea ericoides) were the major components. The oil from M. linariifolia was characterized by a high concentration of methyleugenol (87.2%). The oil from Melaleuca thymifolia was the most active, exhibiting high antimicrobial activity against all tested bacteria.
Resumo:
Four aporphine alkaloids from the wood of Ocotea macrophylla (Lauraceae) were isolated and characterized as (S)-3-methoxy-nordomesticine (1), (S)-N-ethoxycarbonyl-3-methoxy-nordomesticine (2), (S)-N-formyl-3-methoxy-nordomesticine (3) and (S)-N-methoxycarbonyl-3-methoxy-nordomesticine (4); alkaloids 2-4 are being report for the first time. The structure the isolated compounds were determined based on their spectral data and by comparison of their spectral data with values described in literature. The alkaloid fraction and compound 1 showed antifungal activity against Fusarium oxysporum f. sp. lycopersici and also compound 1 showed antimicrobial activity towards Staphylococcus aureus, Enterococcus faecalis as well.
Resumo:
A bacterium isolated from soil contaminated by hydrocarbon was studied and, by biochemical tests and analysis of PCR, the presence of Bacillus pumilus was identified. The production of biosurfactant was optimized, test of oil degradation and antimicrobial activity determination. The results showed that pH 5.0 and 7.0, 72 h of fermentation, sucrose and sugar cane juice (2%) had best yields. The bacterium is able to degrade crude oil and displays bacteriostatic and fungistatic activity. From the analysis of proximate composition of biosurfactant found the presence of biopolymer formed by a lipopolysaccharide-protein complex.
Resumo:
The phytochemical investigation of ethanolic extracts from leaves, branches and stems of D. bipinnatum afforded the steroids β-sitosterol, stigmasterol, campesterol, sitostenone and sitosterol-3-O-β-D-glycopyranoside, along with two cycloartane triterpenes: cycloeucalenol and 24-methylenecycloartenol. The antimicrobial activity of the extracts was evaluated against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6623), Pseudomonas aeruginosa (ATCC 15442), Micrococcus luteus (ATCC 9341) and Candida albicans (ATCC 10231). The extracts of the leaves and branches showed moderate activity against Candida albicans. The extract of the branches was active against Micrococcus luteus. This is the first report on the phytochemical study of D. bipinnatum.
Resumo:
The aim of this study was to standardize the extractive solution of Syzygium cumini. The extractive solution was selected through a full factorial design, considering the extraction method (maceration-5-days, turbo extraction, percolation), extractor solvent (ethanol 50, 70, 96%) and plant material particle size 0.302 mm into a plant:solvent ratio (1:10), using the dried residue and antimicrobial activity determination as evaluation criteria. The tests were performed in triplicate. It appeared that the percolation is the best procedure extractive, and ethanol mixture: water (50:50) the best solvent. ANOVA analysis showed the importance of these parameters.
Resumo:
Species of the Byrsonima genus are widely distributed around the neotropical zone, being frequently used in folk medicine to treat gastrointestinal, respiratory and skin diseases. This article briefly reviews the ethnopharmacology, pharmacology and phytochemistry of the Byrsonima genus. Eighty three compounds isolated from different species are reported, most of them being flavonoids or triperpenes. The pharmacological studies carried out with the extracts from these plants emphasize on the antimicrobial activity, however other activities have also been investigated leading to promising results. The data presented in this work strongly supports the view that plants of Byrsonima genus have potential therapeutic action.
Resumo:
This study describes the chemical investigation of the ethyl acetate fraction obtained from the hydroethanolic extract of the xylopodium of Cochlospermum regium (Mart. & Schr.) Pilger, which has been associated with antimicrobial activity. Phytochemical investigation produced seven phenol derivatives: ellagic acid, gallic acid, dihydrokaempferol, dihydrokaempferol-3-O-β-glucopyranoside, dihydrokaempferol-3-O-β-(6"-galloyl)-glucopyranoside, pinoresinol, and excelsin. It also contained two triacylbenzenes, known as cochlospermines A and B. The hydroethanolic extract and its fractions exhibited antimicrobial activity (0.1 mg/mL) against Staphylococcus aureus and Pseudomonas aeruginosa. Gallic acid showed activity against S. aureus. Dihydrokaempferol-3-O-β-(6"-galloyl)-glucopyranoside is reported here for the first time in the literature.
Resumo:
The phytochemical investigation of L. macrophylla Benth led to the isolation of a new flavanol named licanol: (-)-4'-O-methyl-epigallocatechin-3'-O-α-L-rhamnoside, along with nine known compounds, identified as: (-)-4'-O-methyl-epigallocatechin, pheophytin A, 13²-hydroxy-(13²-S)-pheophytin A, pheophytin B, sitosterol, stigmasterol, sitosterol-β-O-glucoside, betulinic alcohol and oleanolic acid. The structures were established based on IR, HR-ESI-MS, and NMR spectrometric data analysis with the aid of 2D techniques. The methanolic extracts of leaves and stem bark as well as the compounds licanol, 13²-hidroxi-(13²-S)-feofitina A, and betulinic alcohol demonstrated antimicrobial activity against several bacterial strains.
Resumo:
The phytochemical investigation of Erythroxylum pulchrum St. Hil. (Erythroxylaceae) led to the isolation of three known flavonoid glycosides quercetin-3-O-α-L-rhaminoside, ombuin-3-ruthinoside and ombuin-3-ruthinoside-5-glucoside. These flavonoids are being described for the first time in this E. pulchrum. The structures of the compounds were determined by analysis of IR, MS and NMR data, as well as by comparison with literature data. The methanolic extract of leaves from E. pulchrum inhibited the growth of the Bacillus subtilis CCT 0516, Escherichia coli ATCC 2536, Pseudomonas aeruginosa ATCC 8027, P. aeruginosa ATCC 25619, Staphylococcus aureus ATCC 6538, S. aureus ATCC 25925, Streptococcus sanguinis ATCC 15300, S. salivarius ATCC 7073, S. mutans ATCC 25175 and Streptococcus ATCC. S. aureus ATCC 25925 was the most sensitive among the other S. sanguinis while S. salivarius proved the most resistant.
Resumo:
Flumequine degradation by electrochemical and photo-electrochemical processes was evaluated in this study. The antimicrobial activity of the solutions subjected to the electrochemical processes was monitored during the assays. The experiments were carried out using DSA® (dimensionally stable anode) electrode. The influence of current density was investigated for the 7.5 to 45 mA cm-2 range. The photo-electrochemical process was more efficient for degrading flumequine (85%) and reducing solution antimicrobial activity. For both processes, the residual antimicrobial activity decreased as flumequine degradation increased. The reaction intermediate m/z 244 (5-methyl-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid) was identified.
Resumo:
Three flavanones, two chalcones and one dihydrochalcone were isolated from the branches of Piper glandulosissimum. All isolated compounds were characterized based on IR, UV, 1H and 13C NMR, including 2D NMR analyses (HMQC, HMBC, COSY and NOESY) and comparison with the literature. The compound 7-hydroxy-5,8-dimethoxyflavanone displayed antimicrobial activity against Staphylococcus aureus, S. epidermidis, Trichophyton mentagrophytes and Microsporum canis.
Resumo:
Polyketides and non-ribosomal peptides are natural products widely found in bacteria, fungi and plants. The biological activities associated with these metabolites have attracted special attention in biopharmaceutical studies. Polyketide synthases act similarly to fatty acids synthetases and the whole multi-enzymatic set coordinating precursor and extending unit selection and reduction levels during chain growth. Acting in a similarly orchestrated model, non-ribosomal peptide synthetases biosynthesize NRPs. PKSs-I and NRPSs enzymatic modules and domains are collinearly organized with the parent gene sequence. This arrangement allows the use of degenerated PCR primers to amplify targeted regions in the genes corresponding to specific enzymatic domains such as ketosynthases and acyltransferases in PKSs and adenilation domains in NRPSs. Careful analysis of these short regions allows the classifying of a set of organisms according to their potential to biosynthesize PKs and NRPs. In this work, the biosynthetic potential of a set of 13 endophytic actinobacteria from Citrus reticulata for producing PKs and NRP metabolites was evaluated. The biosynthetic profile was compared to antimicrobial activity. Based on the inhibition promoted, 4 strains were considered for cluster analysis. A PKS/NRPS phylogeny was generated in order to classify some of the representative sequences throughout comparison with homologous genes. Using this approach, a molecular fingerprint was generated to help guide future studies on the most promising strains.