924 resultados para amphiphilic copolymers, block copolymers, statistical copolymers, inverse emulsions, micelles
Resumo:
The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, Clue to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions Of Cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus Cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
Gold nanoparticles with a polymer coating exhibiting large and reversible thermoresponsiveness are prepared via a one-pot synthesis method using narrow polydispersity thermoresponsive block copolymers. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Focuses on recent advances in research on block copolymers, covering chemistry (synthesis), physics (phase behaviors, rheology, modeling), and applications (melts and solutions). Written by a team of internationally respected scientists from industry and academia, this text compiles and reviews the expanse of research that has taken place over the last five years into one accessible resource. Ian Hamley is the world-leading scientist in the field of block copolymer research Presents the recent advances in the area, covering chemistry, physics and applications. Provides a broad coverage from synthesis to fundamental physics through to applications Examines the potential of block copolymers in nanotechnology as self-assembling soft materials
Resumo:
Morphology formation by block copolymers in the melt is reviewed, considering both theoretical and experimental aspects. Comprehensive tables provide information on morphology identification for many block copolymer systems. A particular focus is on recent structural studies on ABC triblocks and rod–coil copolymers.
Resumo:
The phase diagram of a series of poly(1,2-octylene oxide)-poly(ethylene oxide) (POO-PEO) diblock copolymers is determined by small-angle X-ray scattering. The Flory-Huggins interaction parameter was measured by small-angle neutron scattering. The phase diagram is highly asymmetric due to large conformational asymmetry that results from the hexyl side chains in the POO block. Non-lamellar phases (hexagonal and gyroid) are observed near f(PEO) = 0.5, and the lamellar phase is observed for f(PEO) >= 0.5.
Resumo:
A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed ‘‘emulsomes’’ are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.
Resumo:
The stability of ternary blends of two immiscible homopolymers and a block copolymer compatiblizer depends crucially on the effective interaction between the copolymermonolayers that form between the unlike homopolymer domains. Here, the interaction is calculated for blends involving A and B homopolymers of equal size with ABABdiblock copolymers of symmetric composition using both self-consistent field theory (SCFT) and strong-segregation theory (SST). If the homopolymers are larger than the copolymer molecules, an attractive interaction is predicted which would destroy the blend. This conclusion coupled with considerations regarding the elastic properties of the monolayer suggests that the optimum size of the homopolymer molecules is about 80% that of the copolymer molecule. A detailed examination of the theory demonstrates that the attraction results from the configurational entropy loss of the homopolymer molecules trapped between the copolymermonolayers. We conclude by suggesting how the monolayers can be altered in order to suppress this attraction and thus improve compatiblization.
Resumo:
Recent experiments have demonstrated that block copolymers are capable of stabilizing immiscible homopolymer blends producing bicontinuous microemulsion. The stability of these polymeric alloys requires the copolymer to form flexible, nonattractive monolayers along the homopolymer interfaces. We predict that copolymer polydispersity can substantially and simultaneously improve the monolayers in both of these respects. Furthermore, polydispersity should provide similar improvements in systems, such as colloidal suspensions and polymer/clay composites, that utilize polymer brushes to suppress attractive interactions.
Resumo:
The adsorption behavior of several amphiphilic polyelectrolytes of poly(maleic anhydride-alt-styrene) functionalized with naphthyl and phenyl groups, onto amino-terminated silicon wafer has been studied by means of null- ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The maximum of adsorption, Gamma(plateau), varies with the ionic strength, the polyelectrolyte structure and the chain length. Values of Gamma(plateau) obtained at low and high ionic strengths indicate that the adsorption follows the ""screening-reduced adsorption"" regime. Large aggregates were detected in solution by means of dynamic light scattering and fluorescence measurements. However. AFM indicated the formation of smooth layers and the absence of aggregates. A model based on a two-step adsorption behavior was proposed. In the first one, isolated chains in equilibrium with the aggregates in solution adsorbed onto amino-terminated surface. The adsorption is driven by electrostatic interaction between protonated surface and carboxylate groups. This first layer exposes naphtyl or phenyl groups to the solution. The second layer adsorption is now driven by hydrophobic interaction between surface and chains and exposes carboxylate groups to the medium, which repel the forthcoming chain by electrostatic repulsion. Upon drying some hydrophobic naphtyl or phenyl groups might be oriented to the air, as revealed by contact angle measurements. Such amphiphilic polyelectrolyte layers worked well for the building-up of multilayers with chitosan. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study investigates the structures of layers of amphiphilic diblock copolymers of poly(t-butyl styrene)-poly- (styrene sulfonate) (PtBS-PSS) adsorbed on both the bare mica surface (hydrophilic) and an octadecyltriethoxysilane (OTE)-modified mica surface (hydrophobic). When the surface is rendered hydrophobic, the nonsoluble block exhibits stronger interaction with the surface and higher adsorbed masses are achieved. Interaction forces between two such adsorbed layers on both substrates were measured using the surface forces apparatus. The effect of salt concentration (Cs) and molecular weight (N) on the height of the self-assembled layers (L0) was examined in each case. The resulting scaling relationship is in good agreement with predictions of the brush model, L0 ∞ N1.0 in the low-salt limit and L0N-1 ∞ (Cs/σ)-0.32 in the salted regime, when adsorption takes place onto the hydrophobized mica surface. For adsorption on the bare mica surface, L0N-0.7 ∞ Cs -0.17 agrees with the scaling prediction of the sparse tethering model. The results suggest that, on the hydrophilic bare mica surface, the adsorbed amount is not high enough to form a brush structure and only very little intermolecular stretching of the tethered chains occurs; in contrast, the presence of the hydrophobic OTE layer increases the tethering density such that the polyelectrolyte chains adopt a brush conformation.
Resumo:
Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.
Resumo:
Clay-containing nanocomposites of polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) copolymers having cylindrical domains were obtained by melt extrusion using a tape die. One type of sample (SEBS-MA) had maleic anhydride attached to the middle block. Two types of organoclays were added, namely Cloisite 20A and Cloisite 30B. Small angle X-ray scattering and transmission electron microscopy (TEM) analyses showed that the addition of 20A clay to SEBS and SEBS-MA resulted in nanocomposites with intercalated and partially exfoliated structures, respectively. The addition of 30B clay to SEBS and SEBS-MA promoted the formation of composites containing relatively large micron-sized and partially exfoliated clay particles, respectively. Our TEM analysis revealed that clay particles embedded in SEBS are preferably in contact with the polystyrene cylindrical domains, while in SEBS-MA they are in contact with the maleated matrix. The extrusion processing promoted alignment of the axes of the polystyrene cylinders along the extrusion direction in all samples, and the basal planes of the clay particles were mostly parallel to the main external surfaces of the extruded tapes. © 2013 Society of Chemical Industry.
Resumo:
Nanopartikel durch Strukturfixierung mizellarer Assoziate aus amphiphilen, endgruppenfunktionalisierten Diblockcopolymeren Zwei unterschiedliche Diblockcopolymersysteme mit Molmassen unterhalb von Mw = 10 000 g/mol wurden über anionische Polymerisation synthetisiert. Ein hetero-telecheles a,w-Poly(dimethylsiloxan)-b-Poly(ethylenoxid) (PDMS-PEO) Diblockcopolymer wurde mit einer Methacrylatendgruppe am PDMS und entweder einer Benzyl-, Hydroxy- oder Carboxylatendgruppe am PEO funktionalisiert. Ein Poly(butadien)-b-Poly(ethylenoxid) (PB-PEO) Diblockcopolymer wurde am PEO ebenfalls entweder mit einer Benzyl-, Hydroxy- oder Carboxylatendgruppe funktionalisiert. In selektiven Lösungsmitteln wie Wasser oder Methanol bilden beide Diblockcopolymersysteme supramolekulare Strukturen mit sphärischer, zylindrischer oder toroider Geometrie aus, die mit statischer und dynamischer Lichtstreuung in Lösung und mit Rasterkraftmikroskopie (AFM) und Transmissionselektronenmikroskopie (TEM) auf der Oberfläche untersucht wurden. Durch Zusatz eines Vernetzers und Initiators wurden die selbstassoziierenden Mizellen des PDMS-PEO Diblockcopolymers permanent durch radikalische Polymerisation mit UV-Licht fixiert. Mizellen des PB-PEO Diblockcopolymers wurden über Bestrahlung mit gamma-Strahlen permanent fixiert. Die Untersuchung der resultierenden Nanopartikel beider Diblockcopolymersysteme mit AFM und TEM zeigte, daß diese sogar in nicht selektiven Lösungsmitteln wie Tetrahydrofuran formstabil bleiben.
Resumo:
Im Rahmen dieser Dissertation wurden die Synthese und die Charakterisierung verschiedener, zum Teil neuartiger Blockcopolymere beschrieben, wobei die Einbeziehung radikalischer Polymeri-sationsmechanismen den konzeptionellen Kern ausmachte. Mit einer auf die jeweilige Kombination von Monomeren zugeschnittenen Syntheseroute gelang die Verknüpfung von Segmenten, die allein mittels der herkömmlich zur Synthese von Blockcopolymeren genutzten, ionischen Mechanismen nur mit hohem Aufwand oder gar nicht zu verbinden sind. Auf materieller Seite stand die Herstellung amphiphiler Strukturen im Vordergrund. Diese wurden entweder direkt beim Aufbau der Blockcopo-lymere oder nach anschließender polymeranaloger Umsetzung eines ihrer Segmente erhalten. Solche amphiphilen Substanzen besitzen aufgrund ihrer Grenzflächenaktivität Anwendungspotential z. B. als Stabilisatoren in der Dispersionspolymerisation oder als Flokkulantien. Es wurden drei Verfahren zum Aufbau von Blockcopolymeren untersucht:1. Die Transformation von anionischer zu freier radikalischer Polymerisation für die Synthese von Polystyrol-b-poly(N-vinylformamid) (PS-b-P(VFA)).2. Die Transformation von anionischer zu kontrollierter radikalischer Polymerisation (ATRP) für den Aufbau von Blockcopolymeren aus Poly(dimethylsiloxan) PDMS und Segmenten von t-Butylacrylat (t-BuA) bzw. (2-(Trimethylsiloxy)ethyl)methacrylat (TMS-HEMA).3. Die kontrollierte radikalische Polymerisation unter Einsatz von Triazolinyl als Gegenradikal zur Synthese von Poly[(2-(trimethylsiloxy)ethyl)methacrylat]-b-polystyrol (P(TMS-HEMA)-b-PS) als alternative Route zur anionischen Polymerisation.