931 resultados para alkaline degradation
Resumo:
造纸行业是造成我国水环境有机污染物的重要污染源之一,其水污染的特点是小厂多、草浆多、工艺落后、污染扩散面广、造成废 水排放量大,每年排放的废水量约39亿立方米,占全国工业废水排放量的1/6,其中有机污染物(以BOD5计)160万吨左右,约占全 国工业废水中有机污染物总量的1/4。尤以占全国制浆造纸行业90%以上的碱法草浆造纸厂的蒸煮黑液量大面广,除含有机物外,还 含有木质素、残碱、硫化物、氯化物等污染物,属于PH值高、色度深、难于治理的高浓度有机废水,对水体污染特别严重,各地要 求治理呼声很高,急待研究并尽快找出各种有效的治理途径。对于碱法草浆蒸煮,黑液高浓度废水的治理,有各种方法,根据国内 的研究进展和我们已有试验工作表明,最经济有效,具有实用价值,在生产上可获得成功是厌氧处理法。近10多年来,国外关于高 效厌氧处理技术研究进展迅速,并出现了多种多样的工艺设备,如高效厌氧生物反应器,并在实用化方面取得了很大成绩,建立了 生产性装置,达到了高负荷运行,效果良好。本试验是根据我们已有研究基础,针对我国国情,对小型制浆造纸厂水污染防治除了 开发碱回收及各种综合利用技术外,要特别加强废水(废液)实用技术研究的指导思想,本试验采用改进型的上流式厌氧污泥床反应 器,设计了两种试验方案,通过试验结果如下。1. 试验方案I—碱法草浆黑液酸化和厌氧发酵I号UASB反应器动态模型试验结果表 明:(1). 采用中温35℃±1℃高效厌氧反应器USAB内装有填料(陶粒)和三相分离器,具有保持高浓度生物量和防止污泥流失的特点 ,污泥浓度Vs 可达30%以上,因而具有高效、节能、产能、滞留期短的优点,当进水CODcr在7500-10000mg/l,HRT由7天缩短到3天 ,有机容积负荷在1.22gCODcr/l·d-3.43gCODcr/l·d时,CODcr平均去除率可达55%-45.5%,最高CODcr去除率可达60.2-63.5%, BOD5去除率可达75.9-83.2%,沼气容积产气率可达0.29-0.67l/l·d,每克CODcr转化为沼气产率达0.39-0.48l/gCODcr·d,CH4含量 65.8-75.5%。厌氧发酵出水再用化学法进行后处理脱除难降解的木质素,CODcr总去除率达80%以上。(2). 动态试验结果表明:采 用酸化—厌氧发酵处理黑液工艺合理,技术路线可行。2. 试验方案II—黑液用化学法(Hcl)去除木质素进行厌氧发酵,II号UASB反 应器动态模型试验结果表明:(1). 采用中温35℃±1℃高效厌氧反应器UASB(内有软填料),当进水CODcr7000-13000mg/l左右,HRT 由6天缩短到1天,有机负荷由0.98gCODcr/l·d增加到11gCODcr/l·d时,COD平均去除率均可稳定在70-77%,BOD5去除率为87.3- 93.1%,沼气容积产气率0.21-2.6l/l·d,每克CODcr转化为沼气产率为0.39-0.48l/gCODcr·d,高的可达0.53l/gCODcr·d,转化 率较高,CH4含量63-70%。(2). 试验证明碱法草浆黑液物化预处理—厌氧发酵处理的技术路线也是可行的,工艺合理、效果较好。 在有条件的工厂可采用。3.厌氧发酵阶段几大类群微生物计数表明:(1). 当发酵工艺和运行处于相对稳定状态时,微生物群体的 组成也达到相对的稳定,各类微生物之间保持动态平衡关系。当产乙酸菌的数量为107-108个/ml时,产甲烷菌的数量为105-106 个/ml,当产乙酸菌数量为106-107个/ml时,产甲烷菌的数量为103-105个/ml。(2).稳态运行条件下,黑液预处理为甲烷发酵创造 了有利的生态环境,获得了较好的处理效果和较高的COD转化为沼气的产率0.39-0.48l/g·CODcr·d,反应器中形成较为稳定而数 量较下水污泥中高1-2个数量级的厌氧发酵微生物区系组成。这一结果为黑液厌氧发酵提供了微生物理论依据。Paper industry is one of the important pollution source of water environment in our country. Its character of water pollution is many small factories, much grass pulp, disadvantageous technique, large preading area of pullution. Its effluent makes up 1/6 of whole country's industry wastwater. Its organic pollutant accounts 1/4 of whole country's. Alkaline grass paper pulp effluent with pollutants such as ligoin, remaining alkali sulfide, chloride besides organic material, is a kind of high concentrate organic wastewater which has high PH walug, dark colour and is difficult in treatment. There is urgent require to find ways to treat the wastewater. There are different ways to treat alkaline paper grass pulp effluent. According to the research advances and our experiment work, the most economical and useful way is anaerobic degradation which was advanced quick in last ten years. In the control of waste water of small pulp paper mill, the study of wastewater utilization technology should be emphasized, besides alkaline retrieving and different kinds of comprehensive utilization technology. Our experiment used modified UASB(Upflow Anaerobic Sludge Blanket Reactor). Two kinds of plan were disgned. The results are lined below. 1. The first experiment plant-aciding black pulp effluent and methanogenic digestion. The dynamic model experiment results of I-UASB reactor showed: (1)The mesophilic(35℃±1℃)high effect UASB reactor having haydite and threee state seperation in it had the character of keeping high bioimass concentration and preventing losss of sludge. It had advantages of high effect, energe saving, energe prodcing and short HRT(Hydroulic retention time). When the influent COD was 7500-10000mg, HRT was shortened from 7 days to 3days, organic loading rate was 1.22g-3.43COD/l· d, the average COD removal efficiency was 55%-45%. The highest COD efficiency was 60.2-63.5%, BOD removal of 75.9 -83.4% was achieved. Biogass production rate were up to 0.29-0.67l/l·d. Biogass converted efficiency from every gram of COD could reach 0.39-0.48l/gCOD·d. Methane content was 65.0-75.5%. Chemical method was used to deplate lignin in anaerobic digestion effluent. Total COD removal efficiency could be more than 80%. (2)Using aciding annaerobic digestion to treat the black effluent was reseanable in technique and technology. 2. The second experiment plan-anaerobic digestion was used after the chemical method was used to deplate lignin in the black effluent. The result of dynamic experiment of II-UASB reactor showed: (1)High effect mesophilic (35℃±1℃)UASB reactor having soft slaffing in was used. When influent COD was about 7000-13000mg/l, HRT was shortened from 6 days to 1 day and organic loading rate was increased from 0.90 to 11g COD /l·d, average COD removal efficiency remained stable on 70-77%. BOD, removal efficiency was between 87.3-93.1%. Biogass production rate was 0.2-2.6l/l ·d .Biogass converted efficiency from a gram of COD was 0.39-0.481/gCOD·d with the high value of 0.53l/gCOD·d. Methane content was 63-70%. (2)The way that using physical, chemical Pre-treatment-anaerobic digestion to treat alkaline black effluent is feasible and can be used in some factories when the condition exists. 3. Counting of several class of microoganisms in anaerobic digestion stage showed: (1)As the disgestion was in stable motion, the compositon of microorganic colony could get relative stable. Dynamic balance was remaining among different kinds of microorganism such as methanogenic bacteria, Acidogenic bacteria, sulfate reducing bacteria, and heterotrophic bacteria. (2)Under stable motion, the pre-treatment of black effluent produced favourable eco-enviroment for methanegenic digestion. Good treatment effect and high biogass convertent efficiency from COD(0.39-0.48l/g·COD· d)were gotten. Some stable and high quantity(10-100times more than sewage sludge)microorganism colony were formed in the reactor. This result provided theoretical basis for anaerobic digestion of black effluent.
Resumo:
DNA damage and cell reproductive death determined by alkaline comet and clonogenic survival assays were examined in Lewis lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. Based on the survival data, Lewis lung carcinoma cells were verified to be more radiosensitive to the carbon ion beam than to the X-ray irradiation. The relative biological effectiveness (RBE) value, which was up to 1.77 at 10% survival level, showed that the DNA damage induced by the high-LET carbon ion beam was more remarkable than that induced by the low-LET X-ray irradiation. The dose response curves of '' Tail DNA (%)'' (TD) and "Olive tail moment" (OTM) for the carbon ion irradiation showed saturation beyond about 8 Gy. This behavior was not found in the X-ray curves. Additionally, the carbon ion beam produced a lower survival fraction at 2 Gy (SF2) value and a higher initial Olive tail moment 2 Gy (OTM2) than those for the X-ray irradiation. These results suggest that carbon ion beams having high-LET values produced more severe cell reproductive death and DNA damage in Lewis lung carcinoma cells in comparison with X-rays and comet assay might be an effective predictive test even combining with clonogenic assay to assess cellular radio sensitivity
Resumo:
从采集的土壤样品中分离筛选出一株碱性蛋白酶产生菌G-41,经16S rRNA分子鉴定为芽孢杆菌属菌株。该菌株在发酵培养基中能产生较高产量的胞外碱性蛋白酶(1.7×104U/mL)。以G-41为出发菌株,对其进行重离子辐照诱变处理,获得突变株G-41-68,将该突变株再次经重离子诱变,从大量突变株中筛选出碱性蛋白酶高产菌株15Gy-54,其酶活力达到6.22×104U/mL。与出发菌株相比较,突变株G-41-68和15Gy-54的酶活力分别提高了1.58倍和2.65倍。对突变株15Gy-54的发酵条件进行了优化研究,结果表明,该菌株的碱性蛋白酶活力得到进一步提高,达到7.18×104U/mL,其最适发酵条件为:培养基(g/100mL)为胰蛋白胨1、酵母膏0.5、乳糖5、Na2HPO4·12H2O0.4、KH2PO40.03、Na2CO30.1、MgSO40.0481(4×10-3mol/L)、pH8.0,培养温度41℃,振荡培养时间42-48h。实验结果表明,重离子辐照诱变技术是一种非常有效的微生物诱变育种新技术。
Resumo:
It has been generally agreed that pyridine can be effectively mineralized in aerated TiO2 slurries using near-UV irradiation. The knowledge on the kinetics of the system possesses both practical and theoretical values. The present study, on the base of Langmuir-Hinshewood mechanism, illustrates a pseudo first-order kinetic model of the degradation with the limiting rate constant of 3.004 mg l(-1) min(-1) and equilibrium adsorption constant 2.763 x 10(-2) l mg(-1), respectively. The degradation efficiency in alkali is a little higher than that in acid with a minimum at about pH = 5, which is explained by the formation of acid-pyridine in acidic surrounding together with the amphoteric nature of the TiO2 surface. The promotion of H2O2 on the photo-degradation ties in its supplying proper amount of (OH)-O-. radicals for the inducement stage before surface redox reactions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The lifetime behavior of a H-2/O-2 proton exchange membrane (PEM) fuel cell with polystyrene sulfonic acid (PSSA) membrane have been investigated in order to give an insight into the degradation mechanism of the PSSA membrane. The distribution of sulfur concentration in the cross section of the PSSA membrane was measured by energy dispersive analysis of X-ray, and the chemical composition of the PSSA membrane was characterized by infrared spectroscopy before and after the lifetime experiment. The degradation mechanism of the PSSA membrane is postulated as: the oxygen reduction at the cathode proceeds through some peroxide intermediates during the fuel cell operation, and these intermediates have strong oxidative ability and may chemically attack the tertiary hydrogen at the a carbon of the PSSA; the degradation of the PSSA membrane mainly takes place at the cathode side of the cell, and the loss of the aromatic rings and the SO3- groups simultaneously occurs from the PSSA membrane. A new kind of the PSSA-Nafion composite membrane, where the Nafion membrane is bonded with the PSSA membrane and located at the cathode of the cell, was designed to prevent oxidation degradation of the PSSA membrane in fuel cells. The performances of fuel cells with PSSA-Nafion101 and PSSA-recast Nafion composite membranes are demonstrated to be stable after 835 h and 240 h, respectively.
Resumo:
Natural humic lake water and aqueous solutions of humic substances were treated with ultraviolet (UV) radiation (λ = 254 nm). The effects on the dissolved organic carbon content (DOC) and the absorbance at 254 nm (Abs254) and 460 nm (Abs460) were monitored and the identity and concentrations of gas chromatographable organic degradation products were determined. The DOC content and the (Abs254) of the humic solutions decreased continuously with increasing UV-dose. Several aromatic and aliphatic degradation products were identified and roughly quantified The concentrations of aromatic hydroxy carboxylic acids and hydroxy aldehydes increased when relatively low UV-doses were used, but declined following further irradiation. The concentrations of aliphatic dibasic acids increased over the full range of UV-doses
Resumo:
Natural humic water was treated with ultraviolet (UV) light and UV + hydrogen peroxide . The effects on the dissolved organic carbon content (DOC), the UV-absorbance at 254 nm (UV-abs.), the molecular size distribution, pH, and mutagenic activity were monitored, and the identity and concentrations of the most abundant gas chromatographable organic degradation products were determined. The DOC content and the UV-abs. of the water decreased substantially during treatment with. The decreases were dependent on the time of irradiation (UV dose) as well as on the H2O2 dose applied. The humus macromolecules were degraded to smaller fragments during irradiation. At higher UV doses, however, part of the dissolved organic matter (DOM) was found to precipitate, probably as a result of polymerization. Oxalic acid, acetic acid, malonic acid, and n-butanoic acid were the most abundant degradation products detected. These acids were found to account for up to 20% and 80% of the DOM in UV- and waters, respectively. No mutagenic activity was generated by the UV irradiation or the treatment. It is further concluded that the substantial mutagenic activity formed during chlorination of humic waters cannot be decreased by using UV irradiation as a pretreatment step.
Resumo:
Supported by MSS images in the mid and late 1970s, TM images in the early 1990s and TM/ETM images in 2004, grassland degradation in the "Three-River Headwaters" region (TRH region) was interpreted through analysis on IRS images in two time series, then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s. The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale, and rapidly strengthen phenomenon did not exist in the 1990s as a whole. Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s. Since the 1970s, this degradation process has taken place continuously, obviously characterizing different rules in different regions. In humid and semi-humid meadow region, grassland firstly fragmentized, then vegetation coverage decreased continuously, and finally "black-soil-patch" degraded grassland was formed. But in semi-arid and and steppe region, the vegetation coverage decreased continuously, and finally desertification was formed. Because grassland degradation had obviously regional differences in the TRH region, it could be regionalized into 7 zones, and each zone had different characteristics in type, grade, scale and time process of grassland degradation.