985 resultados para advanced techniques
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Perfil Manutenção e Produção
Resumo:
Medical imaging is a powerful diagnostic tool. Consequently, the number of medical images taken has increased vastly over the past few decades. The most common medical imaging techniques use X-radiation as the primary investigative tool. The main limitation of using X-radiation is associated with the risk of developing cancers. Alongside this, technology has advanced and more centres now use CT scanners; these can incur significant radiation burdens compared with traditional X-ray imaging systems. The net effect is that the population radiation burden is rising steadily. Risk arising from X-radiation for diagnostic medical purposes needs minimising and one way to achieve this is through reducing radiation dose whilst optimising image quality. All ages are affected by risk from X-radiation however the increasing population age highlights the elderly as a new group that may require consideration. Of greatest concern are paediatric patients: firstly they are more sensitive to radiation; secondly their younger age means that the potential detriment to this group is greater. Containment of radiation exposure falls to a number of professionals within medical fields, from those who request imaging to those who produce the image. These staff are supported in their radiation protection role by engineers, physicists and technicians. It is important to realise that radiation protection is currently a major European focus of interest and minimum competence levels in radiation protection for radiographers have been defined through the integrated activities of the EU consortium called MEDRAPET. The outcomes of this project have been used by the European Federation of Radiographer Societies to describe the European Qualifications Framework levels for radiographers in radiation protection. Though variations exist between European countries radiographers and nuclear medicine technologists are normally the professional groups who are responsible for exposing screening populations and patients to X-radiation. As part of their training they learn fundamental principles of radiation protection and theoretical and practical approaches to dose minimisation. However dose minimisation is complex – it is not simply about reducing X-radiation without taking into account major contextual factors. These factors relate to the real world of clinical imaging and include the need to measure clinical image quality and lesion visibility when applying X-radiation dose reduction strategies. This requires the use of validated psychological and physics techniques to measure clinical image quality and lesion perceptibility.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática.
Resumo:
Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
This paper analyses the provision of auxiliary clinical services that are typically carried out within the hospital. We estimate a exible cost function for the three most important (cost- wise) diagnostic techniques and therapeutic services in Portuguese hospitals: Clinical Pathology, Medical Imaging and Physical Medicine and Rehabilitation. Our objective in carrying out this estimation is the evaluation of economies of scale and scope in the provision of these services. For all services, we nd evidence of ray economies of scale and some evidence of economies of scope. These results have important policy implications and can be related to the ongoing discussion of where and how should hospitals provide these services.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Recent studies of mobile Web trends show the continued explosion of mobile-friend content. However, the wide number and heterogeneity of mobile devices poses several challenges for Web programmers, who want automatic delivery of context and adaptation of the content to mobile devices. Hence, the device detection phase assumes an important role in this process. In this chapter, the authors compare the most used approaches for mobile device detection. Based on this study, they present an architecture for detecting and delivering uniform m-Learning content to students in a Higher School. The authors focus mainly on the XML device capabilities repository and on the REST API Web Service for dealing with device data. In the former, the authors detail the respective capabilities schema and present a new caching approach. In the latter, they present an extension of the current API for dealing with it. Finally, the authors validate their approach by presenting the overall data and statistics collected through the Google Analytics service, in order to better understand the adherence to the mobile Web interface, its evolution over time, and the main weaknesses.
Resumo:
Doutoramento em Conservação e Restauro, especialidade Teoria, História e Técnicas
Resumo:
Mathematical models and statistical analysis are key instruments in soil science scientific research as they can describe and/or predict the current state of a soil system. These tools allow us to explore the behavior of soil related processes and properties as well as to generate new hypotheses for future experimentation. A good model and analysis of soil properties variations, that permit us to extract suitable conclusions and estimating spatially correlated variables at unsampled locations, is clearly dependent on the amount and quality of data and of the robustness techniques and estimators. On the other hand, the quality of data is obviously dependent from a competent data collection procedure and from a capable laboratory analytical work. Following the standard soil sampling protocols available, soil samples should be collected according to key points such as a convenient spatial scale, landscape homogeneity (or non-homogeneity), land color, soil texture, land slope, land solar exposition. Obtaining good quality data from forest soils is predictably expensive as it is labor intensive and demands many manpower and equipment both in field work and in laboratory analysis. Also, the sampling collection scheme that should be used on a data collection procedure in forest field is not simple to design as the sampling strategies chosen are strongly dependent on soil taxonomy. In fact, a sampling grid will not be able to be followed if rocks at the predicted collecting depth are found, or no soil at all is found, or large trees bar the soil collection. Considering this, a proficient design of a soil data sampling campaign in forest field is not always a simple process and sometimes represents a truly huge challenge. In this work, we present some difficulties that have occurred during two experiments on forest soil that were conducted in order to study the spatial variation of some soil physical-chemical properties. Two different sampling protocols were considered for monitoring two types of forest soils located in NW Portugal: umbric regosol and lithosol. Two different equipments for sampling collection were also used: a manual auger and a shovel. Both scenarios were analyzed and the results achieved have allowed us to consider that monitoring forest soil in order to do some mathematical and statistical investigations needs a sampling procedure to data collection compatible to established protocols but a pre-defined grid assumption often fail when the variability of the soil property is not uniform in space. In this case, sampling grid should be conveniently adapted from one part of the landscape to another and this fact should be taken into consideration of a mathematical procedure.
Resumo:
In the present study three techniques for obtaining outer membrane enriched fractions from Yersinia pestis were evaluated. The techniques analysed were: differential solubilization of the cytoplasmic membrane with Sarkosyl or Triton X-100, and centrifugation in sucrose density gradients. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of outer membrane isolated by the different methods resulted in similar protein patterns. The measurement of NADH-dehydrogenase and succinate dehydrogenase (inner membrane enzymes) indicated that the outer membrane preparations obtained by the three methods were pure enough for analytical studies. In addition, preliminary evidences on the potential use of outer membrane proteins for the identification of geographic variants of Y. pestis wild isolates are presented.
Resumo:
Reliable flow simulation software is inevitable to determine an optimal injection strategy in Liquid Composite Molding processes. Several methodologies can be implemented into standard software in order to reduce CPU time. Post-processing techniques might be one of them. Post-processing a finite element solution is a well-known procedure, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Post-processing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. In previous works influence of smoothness of non-homogeneous Dirichlet condition, imposed on smooth front was examined. However, usually quite a non-smooth boundary is obtained at each time step of the infiltration process due to discretization. Then direct application of post-processing techniques does not improve final results as expected. The new contribution of this paper lies in improvement of the standard methodology. Improved results clearly show that the recalculated flow front is closer to the ”exact” one, is smoother that the previous one and it improves local disturbances of the “exact” solution.
Resumo:
Post-processing a finite element solution is a well-known technique, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Postprocessing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. Consequently such an approach can be exceptionally good in modelling of resin infiltration under quasi steady-state assumption by remeshing techniques and with explicit time integration, because only the free-front normal velocities are necessary to advance the resin front to the next position. The new contribution is the post-processing analysis and implementation of the freeboundary velocities of mesolevel infiltration analysis. Such implementation ensures better accuracy on even coarser meshes, which in consequence reduces the computational time also by the possibility of employing larger time steps.