953 resultados para additive partitioning
Resumo:
Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.
Resumo:
n this paper we deal with the problem of obtaining the set of k-additive measures dominating a fuzzy measure. This problem extends the problem of deriving the set of probabilities dominating a fuzzy measure, an important problem appearing in Decision Making and Game Theory. The solution proposed in the paper follows the line developed by Chateauneuf and Jaffray for dominating probabilities and continued by Miranda et al. for dominating k-additive belief functions. Here, we address the general case transforming the problem into a similar one such that the involved set functions have non-negative Möbius transform; this simplifies the problem and allows a result similar to the one developed for belief functions. Although the set obtained is very large, we show that the conditions cannot be sharpened. On the other hand, we also show that it is possible to define a more restrictive subset, providing a more natural extension of the result for probabilities, such that it is possible to derive any k-additive dominating measure from it.
Resumo:
Part 10: Sustainability and Trust
Resumo:
The need for solutions to minimize the negative environmental impacts of anthropogenic activities Fhas increased. Sewage sludge is composed of predominantly organic matter and can be used to improve soil characteristics, such as fertility. Therefore, its application in agriculture is an adequate alternative for its final disposal. However, there is a lack of information on its long-term effects on soil changes in tropical areas. Thus, the objectives of this study were to determine (i) the effect of sewage sludge application on heavy metal build-up in soil and maize grains and leaves, and (ii) the effects of soil amendment with sewage sludge on the chemical properties of a Brazilian oxisol. Besides the increasing levels of Zn, Cu, Ni, and Cr, amending soil with sewage sludge also alters the distribution of these metals by increasing the mobile Phases, which correlated significantly with the increase in metal extraction with two single extractants, Mehlich 1 and DTPA (Diethylene triamine pentaacetic acid). The levels of Fe, Mn, Zn, and Cu in maize grains and leaves increased with the type and rate of sewage sludge application. Nevertheless, metal build-up in soil and plants was within the allowed limits. Significant differences were also found in soil characteristics like humic fractionation with the applied sewage doses. The data obtained does not indicate any expressive drawbacks in the use of sewage sludge as a soil amendment, as the heavy metal concentrations observed are unlikely to cause any environmental or health problems, even overestimated loadings, and are in accordance with the Brazilian regulations on farming land biosolid disposal.
Resumo:
Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. ^ The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. ^ Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.^
Resumo:
This dissertation investigates de role of the new additive manufacturing techniques in the treatment of pathologies with a patient-specific approach. Throughout this work the development methodology of these said products is explained in order to understand the different stages required to achieve a tailor made solution. The goal is to demonstrate the importance of the manufacturing technique and its capabilities to tailor-fit devices to patients and the adaptability of the process to tackle the most diverse situations. Three real cases are documented in order to prove the viability of the method and to showcase its advantages. Whenever possible patient-specific solutions are compared to their “off-the-shelf” counterparts in order to establish the pros and cons of each one of them. The dissertation is an insight into a possible future for the medical devices industry, where customization is expected to be the standard approach in the treatment of patients.
Resumo:
Traditionally, the teaching of human anatomy in health sciences has been based on the use of cadaveric material and bone parts for practical study. The bone materials get deteriorated and hardly mark the points of insertion of muscles. However, the advent of new technologies for 3D printing and creation of 3D anatomical models applied to teaching, has enabled to overcome these problems making teaching more dynamic, realistic and attractive. This paper presents some examples of the construction of three-dimensional models of bone samples, designed using 3D scanners for posterior printing with addition printers or polymer injection printers.
Resumo:
In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.
Resumo:
This work is going to show the activities performed in the frame of my PhD studies at the University of Bologna, under the supervision of Prof. Mauro Comes Franchini, at the Department of Industrial Chemistry “Toso Montanari”. The main topic of this dissertation will be the study of organic-inorganic hybrid nanostructures and materials for advanced applications in different fields of materials technology and development such as theranostics, organic electronics and additive manufacturing, also known as 3D printing. This work is therefore divided into three chapters, that recall the fundamentals of each subject and to recap the state-of-the-art of scientific research around each topic. In each chapter, the published works and preliminary results obtained during my PhD career will be discussed in detail.
Resumo:
I veicoli ad alte prestazioni sono soggetti ad elevati carichi per piccoli intervalli di tempo. Questo comporta diverse criticità sulle componenti che costituiscono la vettura: una di queste è la pinza freno. Al fine di renderla performante è necessario il possesso di due proprietà. In primo luogo, la pinza freno deve essere il più leggera possibile poiché essa conferisce un'inerzia nella risposta della sospensione del veicolo, procurando il distacco dello pneumatico dal suolo e causando perdita di aderenza. In secondo luogo, è necessario contenere le deformazioni della pinza freno garantendo un determinato feeling per il pilota. Il compito del progettista è ottimizzare questi due parametri che hanno effetti antitetici. Questa difficoltà porta il progettista a creare design molto complessi per raggiungere l’ottimale e non sempre le geometrie ottenute sono realizzabili con tecnologie convenzionali. Questo studio riguarda il miglioramento prestazionale di una pinza freno costruita con una lega di alluminio 7075-T6 e lavorato dal pieno. Gli obbiettivi sono quello di produrre il nuovo corpo in titanio TI6Al4V, dal momento che le temperature di esercizio portano a grandi decadute di caratteristiche meccaniche dell’alluminio, contenere il più possibile la massa a fronte dell’aumento di densità di materiale e ovviamente limitare le deformazioni. Al fine di ottenere gli obbiettivi prefissati sono utilizzati metodi agli elementi finiti in diverse fasi della progettazione: per acquisire una geometria di partenza (ottimizzazione topologica) e per la validazione delle geometrie ottenute. Le geometrie ricavate tramite l’ottimizzazione topologica devono essere ricostruite tramite software CAD affinché possano essere ingegnerizzate. Durante la modellazione è necessario valutare quale tecnologia è più vantaggiosa per produrre il componente. In questo caso studio si utilizza un processo di addizione di materiale, più specificatamente una tecnica Selective Laser Melting (SLM).
Resumo:
Il 3D printing è presente da tempo in molti settori economici e da sempre ha nella sanità uno dei principali ambiti di applicazione. Durante il corso del presente lavoro sono state esaminate le principali applicazioni in campo sanitario con particolare focus sulla fase di planning in caso di chirurgia complessa. La pianificazione risulta essere la fase maggiormente impattante nel contesto più globale di gestione del paziente in quanto una maggior accuratezza nella visualizzazione del caso clinico consente di ottimizzare l’identificazione di un adeguato approccio chirurgico con ovvie conseguenti ripercussioni positive sulla totalità della degenza del paziente all’interno della struttura clinica ospitante. Nel dettaglio è stato valutato l’utilizzo di un innovativo protocollo di pre-planning e follow-up operatorio tramite la realizzazione di modelli stampati 3D a partire da immagini di diagnostica classica (TAC, MRI, 3Dscan) che hanno consentito di poter fornire allo specialista clinico di riferimento un prodotto che riproducendo perfettamente l’anatomia del soggetto (morfologia-proprietà fisiche del tessuto) ha consentito allo stesso un miglioramento delle usuali pratiche chirurgiche e terapeutiche in casi di elevata complessità in un arco temporale ristretto. I parametri utilizzati per la valutazione dei reali benefici dell’approccio esposto sono stati: tempi di pianificazione chirurgica e tempi di intervento all’interno di una più globale analisi dei costi associati. A fronte di un’indagine interna preventiva presso l’azienda ospedaliera ospitante sono stati designati i seguenti reparti come settori pilota: maxillofacciale, neurochirurgia e radiologia interventistica. Lo studio è stato svolto in collaborazione con l’ospedale M.Bufalini di Cesena in qualità di referente clinico e l’azienda Aid4Med Srl in qualità di azienda leader in pianificazione operatoria tramite ausili realizzati tramite tecniche di additive manufacturing.
Resumo:
The increased exploitation of carbon fiber reinforced polymers (CFRP) is inevitably bringing about an increase in production scraps and end-of-life components, resulting in a sharp increase in CFRP waste. Therefore, it is of paramount importance to find efficient ways to reintroduce waste into the manufacturing cycle. At present, several recycling methods for treating CFRPs are available, even if all of them still have to be optimized. The step after CFRP recycling, and also the key to build a solid and sustainable CFRP recycling market, is represented by the utilization of Re-CFs. The smartest way to utilize recovered carbon fibers is through the manufacturing of recycled CFRPs, that can be done by re-impregnating the recovered fibers with a new polymeric matrix. Fused Filament Fabrication (FFF) is one of the most widely used additive manufacturing (3D printing) techniques that fabricates parts with a polymeric filament deposition process that allows to produce parts adding material layer-by-layer, only where it is needed, saving energy, raw material cost, and waste. The filament can also contain fillers or reinforcements such as recycled short carbon fibers and this makes it perfectly compliant with the re-application of the shortened recycled CF. Therefore, in this thesis work recycled and virgin carbon fiber reinforced PLA filaments have been initially produced using 5% and 10% of CFs load. Properties and characteristics of the filaments have been determined conducting different analysis (TGA, DMA, DSC). Subsequently the 5%wt. Re-CFs filament has been used to 3D print specimens for mechanical characterization (DMA, tensile test and CTE), in order to evaluate properties of printed PLA composites containing Re-CFs and evaluate the feasibility of Re-CFs in 3D printing application.
Resumo:
Scopo dell'elaborato è stato la produzione di un materiale bio-composito formato da PLA ed un rinforzo di origine naturale derivante dal settore agricolo, nell'ottica di diminuire i costi dei manufatti costituiti da tale materiale, riducendo il contenuto di PLA, e rivalorizzare lo scarto di farine in applicazioni di stampa 3D. Inizialmente le farine sono state studiate mediante analisi spettroscopiche (FT-ATR), osservazioni al microscopio ottico e analisi TGA. Dopodiché sono stati prodotti filamenti per stampa 3D di materiale composito al 10% e caratterizzati termicamente (DSC, TGA, Cp) e meccanicamente (DMA). Successivamente alla stampa 3D di questi filamenti, sono stati analizzati comportamenti termici (CTE, DSC) e meccanici (prove di trazione, DMA) dei provini stampati. Si è infine valutata l'influenza del trattamento termico di ricottura sui provini stampati mediante analisi DSC e DMA.
Resumo:
This research work concerns the application of additive manufacturing (AM) technologies in new electric mobility sectors. The unmatched freedom that AM offers can potentially change the way electric motors are designed and manufactured. The thesis investigates the possibility of creating optimized electric machines that exploit AM technologies, with potential in various industrial sectors, including automotive and aerospace. In particular, we will evaluate how the design of electric motors can be improved by producing the rotor core using Laser Powder Bed Fusion (LPBF) and how the resulting design choices affect component performance. First, the metallurgical and soft magnetic properties of the pure iron and silicon iron alloy parts (Fe-3% wt.Si) produced by LPBF will be defined and discussed, considering the process parameters and the type of heat treatment. This research shows that using LPBF, both pure iron and iron silicon, the parts have mechanical and magnetic properties different from the laminated ones. Hence, FEM-based modeling will be employed to design the rotor core of an SYN RM machine to minimize torque ripple while maintaining structural integrity. Finally, we suggest that further research should extend the field of applicability to other electrical devices.