878 resultados para acute kidney injury
Resumo:
BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.
Resumo:
OBJECTIVE: To simultaneously determine perceived vs. practiced adherence to recommended interventions for the treatment of severe sepsis or septic shock. DESIGN: One-day cross-sectional survey. SETTING: Representative sample of German intensive care units stratified by hospital size. PATIENTS: Adult patients with severe sepsis or septic shock. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Practice recommendations were selected by German Sepsis Competence Network (SepNet) investigators. External intensivists visited intensive care units randomly chosen and asked the responsible intensive care unit director how often these recommendations were used. Responses "always" and "frequently" were combined to depict perceived adherence. Thereafter patient files were audited. Three hundred sixty-six patients on 214 intensive care units fulfilled the criteria and received full support. One hundred fifty-two patients had acute lung injury or acute respiratory distress syndrome. Low-tidal volume ventilation < or = 6 mL/kg/predicted body weight was documented in 2.6% of these patients. A total of 17.1% patients had tidal volume between 6 and 8 mL/kg predicted body weight and 80.3% > 8 mL/kg predicted body weight. Mean tidal volume was 10.0 +/- 2.4 mL/kg predicted body weight. Perceived adherence to low-tidal volume ventilation was 79.9%. Euglycemia (4.4-6.1 mmol/L) was documented in 6.2% of 355 patients. A total of 33.8% of patients had blood glucose levels < or = 8.3 mmol/L and 66.2% were hyperglycemic (blood glucose > 8.3 mmol/L). Among 207 patients receiving insulin therapy, 1.9% were euglycemic, 20.8% had blood glucose levels < or = 8.3 mmol/L, and 1.0% were hypoglycemic. Overall, mean maximal glucose level was 10.0 +/- 3.6 mmol/L. Perceived adherence to strict glycemic control was 65.9%. Although perceived adherence to recommendations was higher in academic and larger hospitals, actual practice was not significantly influenced by hospital size or university affiliation. CONCLUSIONS: This representative survey shows that current therapy of severe sepsis in German intensive care units complies poorly with practice recommendations. Intensive care unit directors perceive adherence to be higher than it actually is. Implementation strategies involving all intensive care unit staff are needed to overcome this gap between current evidence-based knowledge, practice, and perception.
Resumo:
Ischemia/reperfusion injury leads to activation of graft endothelial cells (EC), boosting antigraft immunity and impeding tolerance induction. We hypothesized that the complement inhibitor and EC-protectant dextran sulfate (DXS, MW 5000) facilitates long-term graft survival induced by non-depleting anti-CD4 mAb (RIB 5/2). Hearts from DA donor rats were heterotopically transplanted into Lewis recipients treated with RIB 5/2 (20 mg/kg, days-1,0,1,2,3; i.p.) with or without DXS (grafts perfused with 25 mg, recipients treated i.v. with 25 mg/kg on days 1,3 and 12.5 mg/kg on days 5,7,9,11,13,15). Cold graft ischemia time was 20 min or 12 h. Median survival time (MST) was comparable between RIB 5/2 and RIB 5/2+DXS-treated recipients in the 20-min group with >175-day graft survival. In the 12-h group RIB 5/2 only led to chronic rejection (MST = 49.5 days) with elevated alloantibody response, whereas RIB 5/2+DXS induced long-term survival (MST >100 days, p < 0.05) with upregulation of genes related to transplantation tolerance. Analysis of the 12-h group treated with RIB 5/2+DXS at 1-day posttransplantation revealed reduced EC activation, complement deposition and inflammatory cell infiltration. In summary, DXS attenuates I/R-induced acute graft injury and facilitates long-term survival in this clinically relevant transplant model.
Resumo:
Chronic lung diseases and acute lung injuries are two distinctive pulmonary disorders that result in significant morbidity and mortality. Adenosine is a signaling nucleoside generated in response to injury and can serve both protective and destructive functions in tissues and cells through interaction with four G-protein coupled adenosine receptors: A1R, A2AR, A2BR, and A3R. However, the relationship between these factors is poorly understood. Recent findings suggest the A2BR has been implicated in the regulation of both chronic lung disease and acute lung injury. The work presented in this dissertation utilized the adenosine deaminase-deficient mouse model and the bleomycin-induced pulmonary injury model to determine the distinctive roles of the A2BR at different stages of the disease. Results demonstrate that the A2BR plays a protective role in attenuating vascular leakage in acute lung injuries and a detrimental role at chronic stages of the disease. In addition, tissues from patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were utilized to examine adenosine metabolism and signaling in chronic lung diseases. Results demonstrate that components of adenosine metabolism and signaling are altered in a manner that promotes adenosine production and signaling in the lungs of these patients. Furthermore, this study provides the first evidence that A2BR signaling can promote the production of inflammatory and fibrotic mediators in patients with these disorders. Taken together, these findings suggest that the A2BR may have a bi-phasic effect at different stages of lung disease. It is protective in acute injury, whereas pro-inflammatory and pro-fibrotic at the chronic stage. Patients with acute lung injury or chronic lung disease may both benefit from adenosine and A2BR-based therapeutics.
Resumo:
Hemodialysis (HD) is a renal replacement therapy that can enable recovery of patients in acute kidney failure and prolong survival for patients with end-stage kidney failure. HD is also uniquely suited for management of refractory volume overload and removal of certain toxins from the bloodstream. Over the last decade, veterinary experience with HD has deepened and refined and its geographic availability has increased. As awareness of the usefulness and availability of dialytic therapy increases among veterinarians and pet owners and the number of veterinary dialysis facilities increases, dialytic management will become the standard of advanced care for animals with severe intractable uremia.
Resumo:
Objetivo: Determinar la significación clínica y pronóstica de la disfunción renal en pacientes con Endocarditis Infecciosa (EI) Material y método: Estudio protocolizado, descriptivo, observacional y transversal de pacientes con EI diagnosticados según criterios de Duke. Se realizó un análisis comparativo entre los pacientes con EI sin (Grupo Sin) y con Disfunción Renal (Grupo DR), que se definió en base a uremia > 0.60 g/l y/o creatininemia > 1.5 mg/dl y/o hematuria o proteinuria. Fueron analizados en EPI info 6.04. Resultados: De un total de 110 EI incluidas, 58 (52.7%) presentaron DR principalmente secundaria a glomerulonefritis (n 22), sepsis (n 14), insuficiencia renal crónica (n 5), insuficiencia cardíaca, nefropatía diabética y nefrotoxicidad (n 4 cada una) y embólica (n 1). No hubo diferencias en la permanencia media hospitalaria (32 DS±23.3 vs 26.32 DS±17.28 días), el sexo (masculino: 60.3 vs 71.25%) y la demora diagnóstica (5.5 (DS±7.23) vs. 5.4 (DS±7.64 días)(pNS). La edad media fue mayor en el grupo DR en el LS (49.62 DS±15.71 vs 43.53 DS±17.94 años). El Grupo DR tuvo mas frecuentemente EI Definida (87.9 vs 67.3%) (p=0.0089) y no hubo diferencias en la localización Mitral (48.3 vs 48.1%) y Aórtica (44.8 vs 34.6%). La valvulopatía degenerativa se presentó en el LS en DR (34.5 VS 19.6%)(p=0.07). No hubo diferencias en la presencia de comórbidas (62.1 vs 71.2%) (pNS) pero la enfermedad últimamente fatal ocurrió mas frecuentemente en DR (51.4 vs 21.6%)(p=0.05). Al ingreso sólo la presencia de rales pulmonares (53.4 vs 32.7%) y púrpura cutánea (27.6 vs 13.5%) fueron más frecuentes en DR (p=0.05). La sepsis no controlada (34.5 vs 15.7%), insuficiencia cardíaca (51.7 vs 32.7%), encefalopatía (50 vs 27.5%), shock séptico (24.1 vs 7.8%) y fallo multiorgánico (34.5 vs 3.9%) fueron complicaciones más frecuentes en DR (p<0.05). La fiebre persistente se encontró en el LS en el grupo de DR (48.3 vs 32.7%)(p=0.09). No hubo diferencias en el hallazgo de vegetaciones por ecocardiografía (83.3 vs 75.6%). La anemia (Hb<9 mg/dl) (31.86 DS±53.41 vs 35.21 DS±7.85)(p=0.009), hipergammaglobulinemia (58.5 vs 29.8)(p=0.006) e hiperglucemia (36.1 vs 18.5)(p=0.03) se asociaron a DR. En el grupo con DR fue mas común la EI con cultivos negativos (31.5 vs 0%)(p=0.001) y el predominio de las infecciones por S. aureus Meticilino Resistente (MRSA)(21.6 vs 2.7%) (p=0.02). No hubo diferencias en la indicación de cirugía (31 vs 36.5%). La mortalidad hospitalaria fue significativamente mayor en DR (51.7 vs 25%)(p=0.0041)(OR 3.2, IC95%1.42-7.24). Conclusión: En los pacientes con EI la disfunción renal resultó ser un indicador de desarrollo de complicaciones infecciosas y cardíacas, de infección por MRSA y de mortalidad cruda hospitalaria.-
Resumo:
Erythropoietin (EPO) promotes neuronal survival after hypoxia and other metabolic insults by largely unknown mechanisms. Apoptosis and necrosis have been proposed as mechanisms of cellular demise, and either could be the target of actions of EPO. This study evaluates whether antiapoptotic mechanisms can account for the neuroprotective actions of EPO. Systemic administration of EPO (5,000 units/kg of body weight, i.p.) after middle-cerebral artery occlusion in rats dramatically reduces the volume of infarction 24 h later, in concert with an almost complete reduction in the number of terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling of neurons within the ischemic penumbra. In both pure and mixed neuronal cultures, EPO (0.1–10 units/ml) also inhibits apoptosis induced by serum deprivation or kainic acid exposure. Protection requires pretreatment, consistent with the induction of a gene expression program, and is sustained for 3 days without the continued presence of EPO. EPO (0.3 units/ml) also protects hippocampal neurons against hypoxia-induced neuronal death through activation of extracellular signal-regulated kinases and protein kinase Akt-1/protein kinase B. The action of EPO is not limited to directly promoting cell survival, as EPO is trophic but not mitogenic in cultured neuronal cells. These data suggest that inhibition of neuronal apoptosis underlies short latency protective effects of EPO after cerebral ischemia and other brain injuries. The neurotrophic actions suggest there may be longer-latency effects as well. Evaluation of EPO, a compound established as clinically safe, as neuroprotective therapy in acute brain injury is further supported.
Resumo:
The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.
Resumo:
INTRODUÇÃO E OBJETIVO: A estenose de junção ureteropélvica (EJUP) é importante causa de obstrução do trato urinário e pode levar a deterioração progressiva da função renal. Há espaço para o aprimoramento de novos métodos diagnósticos capazes de discriminar hidronefrose e uropatia obstrutiva. Acredita-se que os biomarcadores urinários podem fornecer indícios de lesão renal precoce na obstrução urinária. Neste contexto, KIM-1 pode elevar-se na urina por lesão tubular proximal, NGAL por lesão no túbulo proximal, distal ou alça de Henle, CA19-9 por produção excessiva no túbulo obstruído e ?2-microglobulina (beta2M) por injúria ao glomérulo ou ao túbulo proximal. O objetivo do presente estudo foi avaliar as propriedades diagnósticas dos biomarcadores urinários citados em adultos com EJUP, sendo o primeiro estudo na literatura a avaliar tais moléculas nesta população. MÉTODOS: Foram estudados de modo prospectivo pacientes consecutivos acima de 18 anos com diagnóstico de EJUP submetidos a pieloplastia videolaparoscópica de dezembro de 2013 a fevereiro de 2015. Foram excluídos do estudo pacientes com EJUP bilateral, rim contralateral patológico, EJUP em rim único, antecedentes de tratamento cirúrgico para estenose de JUP ou taxa de filtração glomerular inferior a 60 ml/min/1,73m2. Cada paciente forneceu quatro amostras de urina para medição de biomarcadores, uma no pré-operatório e outras com 1, 3 e 6 meses de seguimento pós-operatório. O grupo controle foi constituído por voluntários saudáveis sem hidronefrose à ultrassonografia. RESULTADOS: Foram incluídos 47 pacientes com idade média de 38,6 ± 12,7 anos (intervalo 19 a 64 anos), sendo 17 (36,2%) do sexo masculino e 30 (62,8%) do sexo feminino. O grupo controle foi composto por 40 indivíduos semelhantes ao grupo com EJUP no que concerne idade (p = 0,95) e sexo (p = 0,82). KIM-1 foi o marcador com melhores propriedades diagnósticas, apresentando área sob a curva (AUC) de 0,79 (95% CI 0,70 a 0,89). O NGAL, por sua vez, teve AUC de 0,71 (95% CI 0,61 a 0,83), CA19- 9 teve AUC de 0,70 (95% CI 0,60 a 0,81) e (beta2M) apresentou AUC de 0,61 (95% CI 0,50 a 0,73), sendo o único biomarcador com propriedades inadequadas neste cenário. O KIM-1 foi o marcador mais sensível com o ponto de corte 170,4 pg/mg de creatinina (sensibilidade 91,4%, especificidade 59,1%) e o CA 19-9 o mais específico para o ponto de corte de 51,3 U/mg de creatinina (sensibilidade 48,9%, especificidade 88,0%), enquanto o NGAL foi o que apresentou maior queda após desobstrução, com 90,0% dos pacientes apresentando clareamento superior a 50%. CONCLUSÕES: A avaliação dos biomarcadores urinários é útil no diagnóstico de obstrução em adultos com EJUP submetidos a pieloplastia videolaparoscópica. O KIM-1 foi o marcador mais sensível e o CA 19-9 o mais específico, enquanto o NGAL foi o que apresentou maior que com a desobstrução. Houve queda das concentrações dos marcadores após pieloplastia no período estudado. O papel exato dos biomarcadores urinários no cenário de obstrução em adultos deve ser mais amplamente investigado
Resumo:
Propofol infusion syndrome (PRIS) is a rare but often fatal complication as a result of large doses of propofol infusion (4–5 mg/kg/hr) for a prolonged period (>48 h). It has been reported in both children and adults. Besides large doses of propofol infusion, the risk factors include young age, acute neurological injury, low carbohydrate and high fat intake, exogenous administration of corticosteroid and catecholamine, critical illness, and inborn errors of mitochondrial fatty acid oxidation. PRIS manifestation include presence of metabolic acidosis with a base deficit of more than 10 mmol/l at least on one occasion, rhabdomyolysis or myoglobinuria, acute renal failure, sudden onset of bradycardia resistant to treatment, myocardial failure, and lipemic plasma. The pathophysiology of PRIS may be either direct mitochondrial respiratory chain inhibition or impaired mitochondrial fatty acid metabolism mediated by propofol. We report a case of supermorbidly obese patient who received propofol infusion by total body weight instead of actual body weight and developed PRIS.
Resumo:
Nitric Oxide (NO) plays a controversial role in the pathophysiology of sepsis and septic shock. Its vasodilatory effects are well known, but it also has pro- and antiinflammatory properties, assumes crucial importance in antimicrobial host defense, may act as an oxidant as well as an antioxidant, and is said to be a vital poison for the immune and inflammatory network. Large amounts of NO and peroxynitrite are responsible for hypotension, vasoplegia, cellular suffocation, apoptosis, lactic acidosis, and ultimately multiorgan failure. Therefore, NO synthase (NOS) inhibitors were developed to reverse the deleterious effects of NO. Studies using these compounds have not met with uniform success however, and a trial using the nonselective NOS inhibitor N-G-methyl-L-arginine hydrochloride was terminated prematurely because of increased mortality in the treatment arm despite improved shock resolution. Thus, the issue of NOS inhibition in sepsis remains a matter of debate. Several publications have emphasized the differences concerning clinical applicability of data obtained from unresuscitated, hypodynamic rodent models using a pretreatment approach versus resuscitated, hyperdynamic models in high-order species using posttreatment approaches. Therefore, the present review focuses on clinically relevant large-animal studies of endotoxin or living bacteria-induced, hyperdynamic models of sepsis that integrate standard day-today care resuscitative measures.
Resumo:
We describe transfusion-related acute lung injury (TRALI) in 2 acute leukemia cases to increase awareness of this under reported serious transfusion complication syndrome in multitransfused patients. There are a number of reports in multitransfused patients with nonmalignant disorders. However, reports of pediatric oncology patients are few, suggesting a lack of recognition or misdiagnosis of the syndrome. A disproportionately high number of fatalities in children is recorded in the literature. This highlights the need for increased awareness and appropriate treatment of this serious complication of transfusion. Although TRALI is initially a clinical diagnosis, the laboratory investigation is vital as it contributes to defining the pathogenesis of the syndrome and importantly facilitates the effective management of implicated donations and donors. An investigational strategy for suspected cases is presented and the results are discussed in the context of current proposed mechanisms for TRALI. As each transfused blood product is associated with a potential risk of TRALI, more frequent reports in patients receiving large volume or recurrent transfusion would be expected.
Resumo:
Introduction: Endothelin-1 is a potent vasoconstricting growth peptide. In physiologic conditions basal levels maintain vascular homeostasis, conversely in pathological situations it may be expressed in response to chronic and acute vascular injury. Elevated levels of plasma ET-1 have been identified in sub-populations at risk of ischaemic heart disease (IHD) including smokers, diabetics and hyerlipidaemic subjects and in patients with atherosclerotic disease. This peptide may be chronically expressed, such as in congestive heart failure where it has been used as a prognostic marker of disease severity and also acutely, after cardiac revascularisation surgery, possibly as a result of endothelial injury and ischaemia. Aims: The objectives of this study were to (1) identify basal endothelin-1 concentrations in a young healthy control group with no risk factors for IHD (control group 1); (2) to compare; (1) venous plasma ET-1 levels preoperatively and post-operatively in patients undergoing CABG surgery, (3) to compare pre-operative plasma ET-1 levels from the CABG group with an age and gender matched control group (control group 2) and (4) combine all three groups to assess correlations between plasma ET-1 and the various risk factors for IHD, including smoking, hypertension, hyperlipidemia, diabetes and family history. Methods: Venous specimens were collected in chilled EDTA tubes and samples measured using an ELISA assay (Biomedica), following the standard protocol for human EDTA plasma. Results: Forty CABG patients (5F, 35M, mean age 66 yrs), 15 control group 1 subjects (8F, 7M, mean age 29 yrs) and 30 control group 2 subjects (5F, 25M, mean age 61 yrs) participated in the study. No significant difference was detected in plasma ET-1 levels between the controls (1) and (2), and the CABG group, where plasma ET-1 levels were 3.37+/ 5.19 pmol/L, 1.99+/3.74 pmol/L and 1.28+/1.27 pmol/L, respectively. There was a non-significant elevation in post-op ET-1 plasma in comparison with the pre-op levels (2.50+/0.51 Vs 1.45+/6.44). There were also no statistical correlation between risk factors for IHD including smoking, hypertension, NIDDM, hyperlipidemia or family history when data from both patient and controls groups was merged. Conclusion: Contrary to other findings, plasma ET-1 does not appear to a valid marker for IHD or factors which are strongly associated with the pathogenesis of this disease.
Resumo:
Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.
Resumo:
INTRODUCTION: Low circulating levels of placenta growth factor (PlGF) is strongly associated with the onset of preeclampsia, a maternal hypertensive disorder characterized by high blood pressure and proteinuria after 20 weeks of gestation. Although, PlGF-deficient mice are born healthy and fertile at a Mendelian ratio, the physiological importance of PlGF in the pathogenesis of preeclampsia is unclear. We hypothesised that decreased levels of PlGF in pregnancy exacerbates the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1. METHODS: Pregnant PlGF-/- mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at high (i) 1.5x109 pfu/ml and low (ii) 0.5x109 pfu/ml doses. Mean arterial blood pressure (MBP), biochemical and histological assessments of maternal kidney, placenta and embryos were performed. RESULTS: Ad-sFlt-1 significantly increased MBP and induced severe glomerular endotheliosis in PlGF-/- mice at E10.5 gestation compared to wild-type animals. High sFlt-1 also significantly elevated albumincreatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury.At a high dose of sFlt-1, there was complete fetal resorption in the pregnant PlGF-/- mice, and even the lower dose of sFlt-1 induced severe fetal resorption and abnormal placental vascularization. Hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria in Ad-sFlt-1 treated pregnant PlGF-/- mice. To determine if placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/- placentas and embryos were generated in wild-time dams and exposed to high sFlt-1 environment. This resulted in reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF-/- mice. CONCLUSIONS: Placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 in preeclampsia and the hydrogen sulphide pathway may rescue preeclampsia phenotypes.